《最新平面直角坐标系与曲线方程PPT课件.ppt》由会员分享,可在线阅读,更多相关《最新平面直角坐标系与曲线方程PPT课件.ppt(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、平面直角坐标系与曲线方平面直角坐标系与曲线方程程1数轴数轴(直线坐标系直线坐标系):2平面直角坐标系:平面直角坐标系:3空间直角坐标系:空间直角坐标系:任意任意点点P实数实数x确确定定有序实数对有序实数对(x,y)确定确定有序实数组有序实数组(x,y,z)确定确定建立坐标系建立坐标系目的目的是是确定点的位置确定点的位置.创建坐标系的创建坐标系的基本原则基本原则:(1)任意一点都有确定的坐标与它对应;任意一点都有确定的坐标与它对应;(2)依据一个点的坐标就能确定此点的位置依据一个点的坐标就能确定此点的位置.求出此点在该坐标系中的求出此点在该坐标系中的坐标坐标.平面直角坐标系建系时,根据几何特点选
2、平面直角坐标系建系时,根据几何特点选择适当的直角坐标系。择适当的直角坐标系。(1)如果图形有对称中心,可以选对称中心为)如果图形有对称中心,可以选对称中心为坐标原点;坐标原点;(2)如果图形有对称轴,可以选择对称轴为坐)如果图形有对称轴,可以选择对称轴为坐标轴;标轴;(3)使图形上的特殊点尽可能多的在坐标轴上。)使图形上的特殊点尽可能多的在坐标轴上。课堂小结课堂小结1.2平面直角坐标平面直角坐标系中的伸缩变换系中的伸缩变换xO 2 y=sinxy=sin2x思考:思考:(1)怎样由正弦曲线)怎样由正弦曲线y=sinx得到曲线得到曲线y=sin2x?在正弦曲线在正弦曲线y=sinx上任取一点上任
3、取一点P(x,y),保持纵坐标不变保持纵坐标不变,将横坐标将横坐标x缩为原来的缩为原来的1/2,就得到正弦曲线就得到正弦曲线y=sin2x.上述的变换实质上就是一个坐标的压缩变换,即:上述的变换实质上就是一个坐标的压缩变换,即:设设P(x,y)是平面直角坐标系中任意一点是平面直角坐标系中任意一点,保持纵坐标不保持纵坐标不变变,将横坐标将横坐标x缩为原来缩为原来1/2,得到点得到点坐标对应关坐标对应关系为系为:通常把通常把上式上式叫做平面直角坐标系中的一个压缩变换。叫做平面直角坐标系中的一个压缩变换。也可以称为曲线按伸缩系数为也可以称为曲线按伸缩系数为1/2向着向着y轴的压缩变换轴的压缩变换(当
4、(当k1时,表示伸长,当时,表示伸长,当k1时,表示伸长,当时,表示伸长,当k0,0(2)把图形看成点的运动轨迹,平面图形的伸缩)把图形看成点的运动轨迹,平面图形的伸缩变换可以用坐标伸缩变换得到;变换可以用坐标伸缩变换得到;(3)在伸缩变换下,平面直角坐标系不变,在同)在伸缩变换下,平面直角坐标系不变,在同一直角坐标系下进行伸缩变换。一直角坐标系下进行伸缩变换。练习:练习:1.在直角坐标系中在直角坐标系中,求下列方程所对应的图形经过求下列方程所对应的图形经过伸缩变换伸缩变换后的图形后的图形.(1)2x+3y=0;(2)x2+y2=12.在同一直角坐标系下,求满足下列图形的伸缩变在同一直角坐标系
5、下,求满足下列图形的伸缩变换:曲线换:曲线变为曲线变为曲线3.在同一直角坐标系下在同一直角坐标系下,经过伸缩变换经过伸缩变换后,后,曲线曲线C变为变为x29y2=1,求曲线,求曲线C的方程并画出图形。的方程并画出图形。x=3xy=y思考思考1:在伸缩:在伸缩下,椭圆是否可下,椭圆是否可以变成圆?抛物线,双曲线变成什么曲线?以变成圆?抛物线,双曲线变成什么曲线?思考思考2:“圆的一组平行弦的中点的轨迹是圆的一条直圆的一组平行弦的中点的轨迹是圆的一条直径径”,你能依据伸缩变换的性质,猜想椭圆的一组平行,你能依据伸缩变换的性质,猜想椭圆的一组平行弦中点的轨迹是什么吗?弦中点的轨迹是什么吗?课堂小结:课堂小结:1.体会坐标法的思想体会坐标法的思想,应用坐标法解决几何问题;应用坐标法解决几何问题;2.掌握平面直角坐标系中的伸缩变换。掌握平面直角坐标系中的伸缩变换。结束语结束语谢谢大家聆听!谢谢大家聆听!21