《2022年山东省实验中学高三第二次模拟考试.docx》由会员分享,可在线阅读,更多相关《2022年山东省实验中学高三第二次模拟考试.docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选学习资料 - - - - - - - - - 优秀学习资料 欢迎下载山东省试验中学20XX 级高三其次次模拟考试数 学 试 题(理)第一卷(挑选题,共 50 分)一、挑选题:本大题共12 小题,每道题5 分,共 60 分;在每道题给出的四个选项中,只有一项是符合题目要求的;1已知复数z 满意 1i z2,就 z 等于C -1+i ()A 1+i D-1-i B1-i 2函数y111值域为B1 2,1C1 ,1 2()x 22D1 , 2A ,13某调查机构对本市学校生课业负担情形进行了调查,设平均每人每天做作业的时间为 x 分钟,有 1000 名学校生参与了此项调查,调查所得数据用程序框图
2、处理,如输出的结果是680,就平均每天做作业的时间在名师归纳总结 060 分钟内的同学的频率是()0)第 1 页,共 11 页A 680 B 320 C0.68 D0.32 4如x5 1a 0a x1a2x2 1a 5x5 1,就a =()A 32 B 1 C-1 D-32 5等差数列 an满意a 2a9a 6,就S 9= ()A -2 B0 C 1 D2 6设a bR ,就f x x| sinxa|b 是奇函数的充要条件是()A a2b20Bab0Cb0Da2b2a7要得到函数ycos2x3的图象,只需将函数y1sin 2x3cos2x 的图像(22A 向左平移8个单位B向右平移2个单位-
3、- - - - - -精选学习资料 - - - - - - - - - C向右平移3个单位优秀学习资料欢迎下载D向左平移4个单位28抛物线 x 2 y 和直线 y x 4 所围成的封闭图形的面积是()A 16 B18 C 20 D22 2 29圆 2 x 2 y 1 与直线 x sin y 1 0 k , k Z 的位置关系是2A 相离 B相切 C相交 D不能确定10 已知函数 y f x 1 是定义域为 R 的偶函数,且在 1, 上单调递减,就不等式f 2 x 1 f x 2 的解集为()1A x x 3 B x | x 3 2C x | 1 x 3 D x | 1 x 33 32 211已
4、知点 P 的双曲线 x y 1 右支上一点, F1、F2分别为双曲线的左、右焦点, I 为 PF F 216 9的内心,如 S IPF 1 S IPF 2 S IF F 1 2 成立,就 的值为()A 5 B48 5C4 D33 412已知函数 f x x 33 x 21, g x x4 1 ,x x 0,关于方程 g f a 0(a2x 6 x 8, x 0为正实数)的根的表达有以下四个命题存在实数 a,使得方程恰有 3 个不同的实根;存在实数 a,使得方程恰有 4 个不同的实根;存在实数 a,使得方程恰有 5 个不同的实根;存在实数 a,使得方程恰有 6 个不同的实根;其中真命题的个数是(
5、)A 0 B1 C 2 D3 第二卷(非挑选题 共 90 分)二、填空题:本大题共 4 个小题,每道题 4 分,共 16 分;将答案直接填写在答题纸给定的横线上;名师归纳总结 13设f 2 ex1,x2,x2.就ff2的值为;第 2 页,共 11 页log x21,- - - - - - -精选学习资料 - - - - - - - - - x优秀学习资料欢迎下载014当实数x,y 满意约束条件yx(a 为常数)时zx3y 的最大值为12,就2x2ya0实数 a 的值为;15已知某个几何体的三视图如下列图,依据图中标出的尺寸(单位: cm),可得这个几何体的体积是cm 2;16过抛物线y22px
6、 p0的焦点 F 的直线 l 与抛物线在第一象限的交点为A,与抛物线准线的交点为B,点 A 在抛物线准线上的射影为C,如AFBF BA BC12,就 p 的值为;三、解答题:本大题共6 个小题,共74 分;解答应写出文字说明,证明过程或演算步骤;17(本小题满分12 分)在ABC 中,角 A 、B、C 所对的边分别为a、b、c,且cosA1.4(I)求sin2B2Ccos2A 的值;(II )如a3,求 bc 的最大值;18(本小题满分12 分)三棱柱 ABC A 1B1C1,BCA90A CBC2,A 在底面 ABC 上的射影恰为AC的中点 D,又知BA 1AC 1.(I)求证:AC 1平面
7、 A1BC;(II )求二面角A A 1BC 的大小;19(本小题满分12 分)有六节电池,其中有 清晰有电没电为止;2 节没电, 4 节有电,每次随机抽到了个测试,不放回,直至分(I)求“ 其次次测出的电池没电的情形下第三次测出的电池也没电” 的概率;名师归纳总结 (II )所要测试的次数为随机变量,求的分布列和数学期望E.第 3 页,共 11 页- - - - - - -精选学习资料 - - - - - - - - - 20(本小题满分12 分)优秀学习资料欢迎下载2 ax已知函数 f x x e , a R .(I)当 a=1 时,求 f x 的图像在 x=-1 处的切线方程;(II )
8、争论 f x 的单调性;21(本小题 14 分)设数列 an的前 n 项和S n, 已知a 1a an12S nn 2 ,nN*.(I)设b nS n2n,求数列 nb的通项公式;(II )如a n1a n,n* N ,求 a 的取值范畴;22(本小题14 分)已知椭圆E:x2y21 ab0的左、 右焦点分别为F1、F2,离心率e2 , 2点 Da2b2(0, 1)在且椭圆E 上;(I)求椭圆 E 的方程;(II )设过点 F2且不与坐标轴垂直的直线交椭圆E 于 A、B 两点,线段AB 的垂直平分线与x 轴交于点 G(t,0),求点 G 横坐标 t 的取值范畴;名师归纳总结 (III )试用
9、t 表示GAB 的面积,并求GAB 面积的最大值;第 4 页,共 11 页- - - - - - -精选学习资料 - - - - - - - - - 优秀学习资料 欢迎下载参考答案16 BCDABA 7 12 DBADBC 161 12 分132 14 -12 154 317( I)sin2B2Ccos2A1 1 cos B 21 1 cos 2C2cos2A1 2 分 3 分2cos2A1111113 6 分2482(II )b2c2a2cosA12 bc41bc2 b2 ca22 bca2, 8 分2bc22 a 10 分3又a3,bc2.当且仅当bc2时,bc2,故 bc 的最大值是2;
10、18解:( 1)如图,设A Dt0,取 AB 的中点 E,就 DE/BC ,由于 BCAC,所以 DEAC ,又 A 1D平面 ABC ,以 DE,DC,DA 1 为 x,y,z 轴建立空间坐标系,就 A(0,-1,0), C(0,1,0), B(2,1,0),名师归纳总结 A 10,0, ,C 10, 2, t ,A CCB,第 5 页,共 11 页AC 10,3, ,BA 1 2, 1, t ,CB2,0,0,由AC CB 10,知- - - - - - -精选学习资料 - - - - - - - - - 又BA 1AC 1,从而AC 1优秀学习资料欢迎下载平面 A 1BC; 5 分名师归
11、纳总结 (II )由AC 1BA 13t20,得t3. 6 分第 6 页,共 11 页设平面 A 1AB 的法向量为n , , ,AA 10,1, 3,AB2,2,0,所以n AA 1y3z0,设 z=1,就n3,3,1 7 分n AB2x2y0再设平面 A 1BC 的法向量为m , , u v w CA 10, 1,3,CB2,0,0,所以m CA 1v03w0,设 w=1,就m0,3,1 8 分m CB2 u故cosm n|m n|7. 10 分m| |n7由于二面角AA 1BC 为锐角,所以可知二面角AA 1BC 的大小为arccos7 12 分719(本小题满分12 分)(I)解法一:
12、设大事A= “ 其次次测出的电池没电” ,B=“ 第三次测出的电池也没电”就P A 1,P A B 1 2 4A A 2 41 2 分36 A 615所以P B AP AIB1 4 分P A5解法二:设A=“ 其次次测出的电池没电的情形下第三次测出的电池也没电” ,就P A 2 4A A 41 4 分1 5C A 55(II )的可能取值为2,3,4, 5 P 22 A 212 A 615P 31 1 2C C A 2 4 223 A 615- - - - - - -精选学习资料 - - - - - - - - - P 4A 4 4C C A 1 23 3优秀学习资料欢迎下载1144 A 64
13、 A 615515P 51 3 4C C A 41 3 4C C A 48 8 分A 6 5A 6 515分布列为P 2 3 4 5 124815151515 10 分名师归纳总结 E2132445864ex. 12 分第 7 页,共 11 页151515151520( I)由于f x 2 x ex,f 2xex2 x ex2xx2所以f 1e f 13 e1, 2 分从而f x 的图像在x=-1 处的切线方程为ye3 e x即y3ex4 . 4 分(II )f 2xeax2 axax e2xax2eax.当 a=0 时,如x0,就f 0,如 就 x .所以当 a=0 时,函数 f x 在区间
14、 ,0 内为减函数,在区间 0, 内为增函数;当a0时 由2xax20,解得x0 或x2,由2xax20,解得0x2.aa 9 分所以当a0时,函数f x 在区间 ,0 内为增函数,在区间0,2内为减函数,在区间2,内为增函数aa当a0 时, 由2x-ax20,解得2 ax0,由2x2 ax0,解得x2或x0.a- - - - - - -精选学习资料 - - - - - - - - - 所以,当a优秀学习资料欢迎下载 12 分0 时 ,函数f x 在区间 -,2 内为增函数,a在区间2 a,0内为减函数,在区间0, 内为增函数设数列 an的前 n 项和为S ,已知a 1a an13 S nn
15、2 ,nN*. 4 分21解:( I)依题意,S n1S na n12S nn 2 ,即S n13S nn 2 .n 2 .即b n13 b n由此得S n1n 213S n因此,所求通项公式为b nS n2nS 1n 2 31a2 3n1,n2N*.2a23n2 6 分(II )由知S na23n1n 2 ,nN*,2n12n1于是,当n2时,n 2an 232a23n1anS nS n1an1an2a23n1n 22a23n2n14a23n22n14 3 n2 a21 2 2 3n 2a21 2 2 3n2 8 分21 2 2 3n20a3 2当n2 时,a n1a na 10 分名师归纳
16、总结 又 n=1 时,a 2a 13 a2aa12,a2, 11 分第 8 页,共 11 页所以nN ,a 的取值范畴是,12 12 分22解:( I)b1,2 Qec2a2a2b2,a2a椭圆 E 的方程为x2y211k0, 4 分2(II )设直线 AB 的方程为yk x代入x2y21,202整理得12k2x242 k x2k2- - - - - - -精选学习资料 - - - - - - - - - 直线 AB 过椭圆的右焦点优秀学习资料欢迎下载F2,方程有两个不等实根;记A x 1,y 1,B x2,y2,AB 中点N x 0,y 0,k1, 6 分就2kx 1x 14k21,2 k2
17、1x01x 1x222k21,y0k x02k22AB 垂直平分线NG 的方程为yy 01 kxx 0.令 y=0 ,得tx 0ky 022k212k212k2114k12. 8 分k2k2k222k0,0t1.y 2|1|F G|k| |x 1x 2|. 10 分2t 的取值范畴为0,12(III )SGAB1|F G| |y 122而|x 1x 2|x 1x 224x x 28 k21,2k21Q0t1, 由tkk22,22t,2k2111.可得k21t2 t,k21112 t2 t所以|x 1x2|2 212 1tt.12又|F2G|=1-t,所以SGAB11t1t2t2 212 1tt
18、2 1t3t0t1.2122 12 分名师归纳总结 设f t t1t3 ,4 .第 9 页,共 11 页就f 1t2 1- - - - - - -精选学习资料 - - - - - - - - - 优秀学习资料.欢迎下载可知f t 在区间0,1单调递增,4在区间1 1 ,4 2单调递减;f 1427所以,当1时 ,f t 有最大值t464所以,当t1时,GAB的面积有最大值3 6 . 8x 0. 14 分4解法二:( II )设直线 AB 的方程为xmy1,xmy1,由x 22 y可得 1,2 m2y22my10,2记A x 1,y 1,B x2,y2,AB 中点N x0,y0,就y 1y 22
19、m,y y 212.2 m22 m 6 分可得y 0y 12y 22 mm2x 0my 0122.2 mAB 垂直平分线NG 的方程为yy 0m x令 y=0 ,得名师归纳总结 tx 0y 022122 m12.1, 8 分第 10 页,共 11 页m2 m2 mm0,0m1. 10 分2t 的取值范畴为0, . 122 8 m(III )SGAB1 | 2F G| |y 1y 2|而|y 1y 2|y 1y224y y 22 m2由t12,而得2 m21.2 mtt.所以|y 1y2|8118 1t1t2- - - - - - -精选学习资料 - - - - - - - - - 优秀学习资料 欢迎下载又|F2G|=1-t,所以SMPQ2 1t3 .t1t3 0t1 .2 12 分所以MPQ 的面积为2下同解法一:名师归纳总结 设f t t1t3 ,27 64. 14 分第 11 页,共 11 页就f 1t2 14 .可知f t 在区间0,1单调递增,4在区间1 1 ,4 2单调递减;f 14所以,当1时,f x 有最大值t4所以,当t1时,GAB的面积有最大值3 6 . 84- - - - - - -