《2023年高二概率知识点及例题.doc》由会员分享,可在线阅读,更多相关《2023年高二概率知识点及例题.doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、概率与记录一、知识要点1、必然事件:一般地,把在条件S下,一定会发生的事件叫做相对于条件S的必然事件。2、不也许事件:把在条件S下,一定不会发生的事件叫做相对于条件S的不也许事件。3、拟定事件:必然事件和不也许事件统称相对于条件S的拟定事件。4、随机事件:在条件S下也许发生也也许不发生的事件,叫相对于条件S的随机事件。5、频数:在相同条件S下反复n次实验,观测某一事件A是否出现,称n次实验中事件A出现的次数nA为事件A出现的频数。6、频率:事件A出现的比例 。7、概率:随机事件A的概率是频率的稳定值,反之,频率是概率的近似值。概率的意义1、概率的对的解释:随机事件在一次实验中发生与否是随机的,
2、但随机性中具有规律性。结识了这种随机中的规律性,可以比较准确地预测随机事件发生的也许性。2、游戏的公平性:抽签的公平性。3、决策中的概率思想:从多个可选答案中挑选出对的答案的决策任务,那么“使得样本出现的也许性最大”可以作为决策的准则。极大似然法、小概率事件4、天气预报的概率解释:明天本地降水概率为70%解释是“明天本地下雨的机会是70%”。5、实验与发现:孟德尔的豌豆实验。6、遗传机理中的记录规律。概率的基本性质1、事件的关系与运算(1)包含。对于事件A与事件B,假如事件A发生,则事件B一定发生,称事件B包含事件A(或事件A包含于事件B),记作。不也许事件记作。(2)相等。若,则称事件A与事
3、件B相等,记作A=B。(3)事件A与事件B的并事件(和事件):某事件发生当且仅当事件A发生或事件B发生。(4)事件A与事件B的交事件(积事件):某事件发生当且仅当事件A发生且事件B发生。(5)事件A与事件B互斥:为不也许事件,即,即事件A与事件B在任何一次实验中并不会同时发生。(6)事件A与事件B互为对立事件:为不也许事件,为必然事件,即事件A与事件B在任何一次实验中有且仅有一个发生。2、概率的几个基本性质(1).(2)必然事件的概率为1.(3)不也许事件的概率为0. .(4)事件A与事件B互斥时,P(AB)=P(A)+P(B)概率的加法公式。(5)若事件B与事件A互为对立事件,则为必然事件,
4、.古典概型1、基本领件:基本领件的特点:(1)任何两个事件是互斥的;(2)任何事件(除不也许事件)都可以表达成基本时间的和。2、古典概型:(1)实验中所有也许出现的基本领件只有有限个;(2)每个基本领件出现的也许性相等。具有这两个特点的概率模型称为古典概型。3、公式:(整数值)随机数的产生如何用计算器产生指定的两个整数之间的取整数值的随机数?书上例题。几何概型1、几何概型:每个事件发生的概率只有与构成该事件区域的长度(面积或体积)成比例的概率模型。2、几何概型中,事件A发生的概率计算公式:均匀随机数的产生常用的是上的均匀随机数,可以用计算器来产生01之间的均匀随机数。二、考点归纳考点 1 考察
5、等也许事件概率计算例 1、从4名男生和2名女生中任3人参与演讲比赛.(I)求所选3人都是男生的概率;(II)求所选3人中恰有1名女生的概率;(III)求所选3人中至少有1名女生的概率.考点 2 考察互斥事件至少有一个发生与互相独立事件同时发生概率计算不也许同时发生的两个事件A、B叫做互斥事件,它们至少有一个发生的事件为A+B,用概率的加法公式P(A+B)=P(A)+P(B)计算。事件A(或B)是否发生对事件B(或A)发生的概率没有影响,则A、B叫做互相独立事件,它们同时发生的事件为AB。用概率的乘法公式P(AB)=P(A)P(B)计算。例 2、设甲、乙、丙三台机器是否需要照顾互相之间没有影响。
6、已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125,()求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少;()计算这个小时内至少有一台需要照顾的概率。考点 3 考核对立事件概率计算必有一个发生的两个互斥事件A、B叫做互为对立事件。用概率的减法公式P(A)=1-P(A)计算其概率。例 3、甲、乙两人在罚球线投球命中的概率分别为()甲、乙两人在罚球线各投球一次,求恰好命中一次的概率;()甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率。考点 4 考察独立反复实验概率计算若n次反复实验中,每次实验结果的概率都不
7、依赖其它各次实验的结果,则此实验叫做n次独立反复实验。若在1次实验中事件A发生的概率为 P,则在n次独立反复实验中,事件A恰好发生k次的概率为Pn(k)=。例 4、某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同。假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2。从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换。()在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;()在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;()当p1=0.8,p2=0.3时,求在第二次灯泡更
8、换工作,至少需要更换4只灯泡的概率。(结果保存两个有效数字)三、高考链接一、用排列组合求概率例1从0到9这10个数字中任取3个数字组成一个没有反复数字的三位数,这个三位数不能被3整除的概率为( )(A)19/54 (B)35/54 (C)38/54 (D)41/60二、互斥事件有一个发生的概率例2某厂生产A产品,每盒10只进行包装,每盒产品都需要检查合格后才干出厂,规定以下,从每盒10只中任意抽4只进行检查,假如次品数不超过1只,就认为合格,否则就认为不合格,已经知道某盒A产品中有2只次品。(1)求该盒产品被检查合格的概率;(2)若对该盒产品分别进行两次检查,求两次检查的结果不一致的概率。三、
9、对立反复实验例3一位学生天天骑自行车上学,从他家到学校有5个交通岗,假设他在交通岗碰到红灯是互相独立的,且首末两个交通岗碰到红灯的概率均为p,其余3个交通岗碰到红灯的概率均为 。(1) 若p=2/3,求该学生在第三个交通岗第一碰到红灯的概率;(2) 若该学生至多碰到一次红灯的概率不超过5/18,求p的取值范围。四、高考易错题辨析一、概念理解不清致错例1抛掷一枚均匀的骰子,若事件A:“朝上一面为奇数”,事件B:“朝上一面的点数不超过3”,求P(A+B)。例2某人抛掷一枚均匀骰子,构造数列,使 ,记 求且的概率。二、有序与无序不分致错例3甲、乙两人参与普法知识竞赛,共有10个不同的题目,其中选择题
10、6个,判断题4个,甲、乙依次各抽一题。求:(1)甲抽到选择题,乙提到判断题的概率是多少?(2)甲、乙两人中至少有1人抽到选择题的概率是多少?例4已知8支球队中有3支弱队,以抽签方式将这8支球队分为A、B两组,每组4支,求:A、B两组中有一组恰有两支弱队的概率。三、分步与分类不清致错例5某人有5把不同的钥匙,逐把地试开某房门锁,试问他恰在第3次打开房门的概率?例6某种射击比赛的规则是:开始时在距目的100m处射击,若命中记3分,同时停止射击。若第一次未命中,进行第二次射击,但目的已在150m远处,这时命中记2分,同时停止射击;若第2次仍未命中,还可以进行第3次射击,此时目的已在200m远处。若第
11、3次命中则记1分,同时停止射击,若前3次都未命中,则记0分。已知身手甲在100m处击中目的的概率为,他命中目的的概率与目的的距离的平方成反比,且各次射击都是独立的。求:射手甲得k分的概率为Pk,求P3,P2,P1,P0的值。五、混淆“互斥”与“独立”犯错例7. 甲投篮命中概率为0.8,乙投篮命中概率为0.7,每人投3次,两人恰好都命中2次的概率是多少?六.混淆有放回与不放回致错例8某产品有3只次品,7只正品,每次取1只测试,取后不放回,求:(1)恰好到第5次3只次品所有被测出的概率;(2)恰好到第k次3只次品所有被测出的概率的最大值和最小值。作业训练1、某一批花生种子,假如每1粒发牙的概率为
12、,那么播下4粒种子恰有2粒发芽的概率是( )。 2、电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为( )。3、4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) 。4、从某项综合能力测试中抽取100人的成绩,记录如表,则这100人成绩的标准差为( )。分数54321人数20103030105、在某地的奥运火炬传递活动中,有编号为的18名火炬手若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为( )。6、右图是根据山东记录年鉴2023中的资料作成的1997年至2023年我省城乡居民百户家庭人口数的茎叶图图中左边的数字从左到右分别表达城乡居民百户家庭人口数的百位数字29 1 1 5 83 0 2 63 1 0 2 4 7和十位数字,右边的数字表达城乡居民百户家庭人口数的个位数字从图中可以得到1997年至2023年我省城乡居民百户家庭人口数的平均数为( )。7、在一次读书活动中,一同学从4本不同的科技书和2本不同的文艺书中任选3本,则所选的书中既有科技书又有文艺书的概率为( )。