第周相似三角形知识点及典型例题.doc

上传人:美****子 文档编号:58065532 上传时间:2022-11-06 格式:DOC 页数:9 大小:279.50KB
返回 下载 相关 举报
第周相似三角形知识点及典型例题.doc_第1页
第1页 / 共9页
第周相似三角形知识点及典型例题.doc_第2页
第2页 / 共9页
点击查看更多>>
资源描述

《第周相似三角形知识点及典型例题.doc》由会员分享,可在线阅读,更多相关《第周相似三角形知识点及典型例题.doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、相似三角形知识点及典型例题知识点归纳:1、三角形相似的判定方法1定义法:对应角相等,对应边成比例的两个三角形相似。2平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。3判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。简述为:两角对应相等,两三角形相似。4判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。5判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。简述为:三边对应成

2、比例,两三角形相似。6判定直角三角形相似的方法:以上各种判定均适用。如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。 直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。#直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。 如图,RtABC中,BAC=90,AD是斜边BC上的高,那么有射影定理如下: 1AD2=BDDC, 2AB2=BDBC , 3AC2=CDBC 。注:由上述射影定理还可以证明勾股定理。即 AB2+AC2=BC2。典型例题:例1 如图,等腰ABC

3、中,ABAC,ADBC于D,CGAB,BG分别交AD,AC于E、 F,求证:BE2EFEG【解题技巧点拨】例2 :如图,AD是RtABC斜BC上的高,E是AC的中点,ED与AB的延长线相交于F,求证:= 【解题技巧点拨】一、如何证明三角形相似例1、如图:点G在平行四边形ABCD的边DC的延长线上,AG交BC、BD于点E、F,那么AGD 。例2、ABC中,AB=AC,A=36,BD是角平分线,求证:ABCBCD例3:,如图,D为ABC内一点连结ED、AD,以BC为边在ABC外作CBE=ABD,BCE=BAD求证:DBEABC二、如何应用相似三角形证明比例式和乘积式例5、ABC中,在AC上截取AD

4、,在CB延长线上截取BE,使AD=BE,求证:DFAC=BCFE例6:如图,在ABC中,BAC=900,M是BC的中点,DMBC于点E,交BA的延长线于点D。求证:1MA2=MDME;2例7:如图ABC中,AD为中线,CF为任一直线,CF交AD于E,交AB于F,求证:AE:ED=2AF:FB。三、如何用相似三角形证明两角相等、两线平行和线段相等。例8:如图E、F分别是正方形ABCD的边AB和AD上的点,且。求证:AEF=FBD例9、在平行四边形ABCD内,AR、BR、CP、DP各为四角的平分线, 求证:SQAB,RPBC例10、A、C、E和B、F、D分别是O的两边上的点,且ABED,BCFE,

5、求证:AFCD例11、直角三角形ABC中,ACB=90,BCDE是正方形,AE交BC于F,FGAC交AB于G,求证:FC=FG例12、RtABC锐角C的平分线交AB于E,交斜边上的高AD于O,过O引BC的平行线交AB于F,求证:AE=BF课后作业一、填空题1.:在ABC中,P是AB上一点,连结 CP,当满足条件ACP=_或APC=_或 AC2=_时,ACPABC9,面积之和为291,那么面积分别是_。3.如图,DEFG是RtABC的内接正方形,假设CF8,DG4,那么BE_。4如图,直角梯形 ABCD中,ADBC,ADCD,ACAB,AD4,BC9,那么 AC_。5ABC中,AB15,AC9,

6、点D是AC上的点,且AD=3,E在AB上,ADE与ABC相似,那么AE的长等于_。6.如图,在正方形网格上画有梯形ABCD,那么BDC的度数为_。7.ABC中,ABAC,A36,BC1,BD平分ABC交于D,那么BD_,AD_,设ABx,那么关于x的方程是_.8如图,D是等边ABC的BC边上一点,把ABC向下折叠,折痕为MN,使点A落在点D处,假设BDDC23,那么AMMN=_。二、选择题9.如图,在正ABC中,D、E分别在AC、AB上,且,AE=BE,那么有AAEDBEDBAEDCBD CAEDABD DBADBCD10如图,在ABC中,D为AC边上一点,DBCA,BC=,AC3,那么CD的

7、长为 A.1B. C.2D. 11如图,ABCD中,G是 BC延长线上一点,AG与 BD交于点E,与DC交于点F,那么图中相似三角形共有 A3对 B4对 C5对 D6对12 P是RtABC的斜边BC上异于B、C的一点,过点P作直线截ABC,使截得的三角形与ABC相似,满足这样条件的直线共有 A1条 B.2条 C3条 D4条13如图,在直角梯形 ABCD中,AB7,AD2,BC=3,假设在 AB上取一点P,使以P、A、D为顶点的三角形和以P、B、C为顶点的三角形相似,这样的P点有 A1个 B2个 C3个 D4个三、解答以下各题14.如图,长方形ABCD中,AB=5,BC10,点P从A点出发,沿A

8、B作匀速运动,1分钟可以到达B点,点Q从B点出发,沿BC作匀速直线运动,1分钟可到C点,现在点P点Q同时分别从A点、B点出发,经过多少时间,线段PQ恰与线段BD垂直?15:如图,正方形DEFG内接于RtABC,EF在斜边BC上,EHAB于H求证:1ADGHED;2EF2BEFC答案例1分析:关键在找“角相等,除条件中已明确给出的以外,还应结合具体的图形,利用公共角、对顶角及由平行线产生的一系列相等的角。本例除公共角G外,由BCAD可得1=2,所以AGDEGC。再1=2对顶角,由ABDG可得4=G,所以EGCEAB。例2分析:证明相似三角形应先找相等的角,显然C是公共角,而另一组相等的角那么可以

9、通过计算来求得。借助于计算也是一种常用的方法。证明:A=36,ABC是等腰三角形,ABC=C=72又BD平分ABC,那么DBC=36在ABC和BCD中,C为公共角,A=DBC=36ABCBCD例3分析: 由条件ABD=CBE,DBC公用。所以DBE=ABC,要证的DBE和ABC,有一对角相等,要证两个三角形相似,或者再找一对角相等,或者找夹这个角的两边对应成比例。从条件中可看到CBEABD,这样既有相等的角,又有成比例的线段,问题就可以得到解决。证明:在CBE和ABD中,CBE=ABD, BCE=BADCBEABD=即:=DBE和ABC中,CBE=ABD, DBC公用CBE+DBC=ABD+D

10、BCDBE=ABC且=DBEABC例4分析:此题要找出相似三角形,那么如何寻找相似三角形呢?下面我们来看一看相似三角形的几种根本图形:(1) 如图:称为“平行线型的相似三角形(2)如图:其中1=2,那么ADEABC称为“相交线型的相似三角形。(3)如图:1=2,B=D,那么ADEABC,称为“旋转型的相似三角形。观察此题的图形,如果存在相似三角形只可能是“相交线型的相似三角形,及EAF与ECA解:设AB=a,那么BE=EF=FC=3a,由勾股定理可求得AE=, 在EAF与ECA中,AEF为公共角,且所以EAFECA例5 分析:证明乘积式通常是将乘积式变形为比例式及DF:FE=BC:AC,再利用

11、相似三角形或平行线性质进展证明:证明:过D点作DKAB,交BC于K,DKAB,DF:FE=BK:BE又AD=BE,DF:FE=BK:AD,而BK:AD=BC:AC即DF:FE= BC:AC,DFAC=BCFE例6 证明:1BAC=900,M是BC的中点,MA=MC,1=C,DMBC,C=D=900-B,1=D,2=2,MAEMDA,MA2=MDME,2MAEMDA,评注:命题1 如图,如果1=2,那么ABDACB,AB2=ADAC。命题2 如图,如果AB2=ADAC,那么ABDACB,1=2。例7 分析:图中没有现成的相似形,也不能直接得到任何比例式,于是可以考虑作平行线构造相似形。怎样作?观

12、察要证明的结论,紧紧扣住结论中“AE:ED的特征,作DGBA交CF于G,得AEFDEG,。与结论相比拟,显然问题转化为证。证明:过D点作DGAB交FC于G那么AEFDEG。平行于三角形一边的直线截其它两边或两边的延长线所得三角形与原三角形相似 1D为BC的中点,且DGBFG为FC的中点那么DG为CBF的中位线, 2将2代入1得:例8 分析:要证角相等,一般来说可通过全等三角形、相似三角形,等边对等角等方法来实现,此题要证的两个角分别在两个三角形中,可考虑用相似三角形来证,但要证的两个角所在的三角形显然不可能相似一个在直角三角形中,另一个在斜三角形中,所以证明此题的关键是构造相似三角形,证明:作

13、FGBD,垂足为G。设AB=AD=3k那么BE=AF=k,AE=DF=2k,BD=ADB=450,FGD=900DFG=450DG=FG=BG=又A=FGB=900AEFGBF AEF=FBD例9 分析:要证明两线平行较多采用平行线的判定定理,但本例不具备这样的条件,故可考虑用比例线段去证明。利用比例线段证明平行线最关键的一点就是要明确目标,选择适当的比例线段。要证明SQAB,只需证明AR:AS=BR:DS。证明:在ADS和ARB中。 DAR=RAB=DAB,DCP=PCB=ABCADSABR 但ADSCBQ,DS=BQ,那么,SQAB,同理可证,RPBC例10分析:要证明AFCD,条件中有平

14、行的条件,因而有好多的比例线段可供利用,这就要进展正确的选择。其实要证明AFCD,只要证明即可,因此只要找出与这四条线段相关的比例式再稍加处理即可成功。证明:ABED,BCFE,两式相乘可得:例11 分析:要证明FC=FG,从图中可以看出它们所在的三角形显然不全等,但存在较多的平行线的条件,因而可用比例线段来证明。要证明FC=FG,首先要找出与FC、FG相关的比例线段,图中与FC、FG相关的比例式较多,那么应选择与FC、FG都有联系的比作为过渡,最终必须得到“?代表一样的线段或相等的线段,便可完成。证明: FGACBE,ABEAGF 那么有而FCDE AEDAFC那么有 又BE=DE正方形的边

15、长相等,即GF=CF。例12 证明:CO平分C,2=3,故RtCAERtCDO,又OFBC,又RtABDRtCAD,即AE=BF。一、B、ACB、AP或 7.1,1,x28二、三、14.分钟 15.(1)略 2证GFCBED 16.(1)证BFDDGC和BADDAC;2证ABDABE。 17.50m 40m 18.证ABCACP和证ABDADP 19.1略 2由1的结论和证RtADCRtCDB即得。 20.(1)略 236cm 21.先探索AD只能与BC成对应边,那么=,得BD=100,BC=64,故ABDBDC22.在ABC中,作ACG=E,CG交AB于点G,在DEF中,作EFH=A,FH交DE于点H,直线CG、FH就是所求的分割线。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 文案大全

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁