《2022年人教版中考数学《角的平分线》word复习教案 .pdf》由会员分享,可在线阅读,更多相关《2022年人教版中考数学《角的平分线》word复习教案 .pdf(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、名师精编优秀教案角的平分线教学过程设计一、角平分钱的性质定理与判定定理的探求与证明1,复习引入课题(1)提问关于直角三角形全等的判定定理(2)让学生用量角器画出图386 中的 AOB的角平分线 OC 2画图探索角平分线的性质并证明之(1)在图 386 中,让学生在角平分线OC上任取一点 P,并分别作出表示点到AOB 两边的距离的线段PD,PE(2)这两个距离的大小之间有什么关系?为什么?学生度量后得出猜想,并用直角三角形全等的知识进行证明,得出定理(3)引导学生叙述角平分线的性质定理(定理1),分析定理的条件、结论,并根据相应图形写出表达式3逆向思维探求角平分线的判定定理名师精编优秀教案(1)
2、让学生将定理1 的条件、结论进行交换,并思考所得命题是否成立?如何证明?请一位同学叙述证明过程,得出定理2角平分线的判定定理(2)教师随后强调定理1 与定 理 2 的区别:已知角平分线用性质为定理1,由所给条件判定出角平分线是定理 2(3)教师指出:直接使用两个定理不用再证全等,可简化解题过程4理解角平分线是到角的两边距离都相等的点的集合(1)角平分线上任意一点(运动显示)到角的两边的距离都相等(渗透集合的纯粹性)(2)在角的内部,到角的两边距离相等的点(运动显示)都在这个角的平分线上(而不在其它位置,渗透集合的完备性)由此得出结论:角的平分线是到角的两边距离相等的所有点的集合二、应用举例、变
3、式练习练习 1 填空:如图386(1)OC平 分AOB,点 P在射线 OC上,PD OA于 D PE OB于 E-(角平分线的性质定理)(2)PD OA,PE OB,-OP 平分 AOB(-)例 1 已知:如图3 87(a),ABC的角平分线BD和 CE交于 F(l)求证:F到 AB,BC和 AC 边的距离相等;(2)求证:AF平分 BAC;(3)求证:三角形中三条内角的平分线交于一点,而且这点到三角形三边的距离相等;(4)怎样找 ABC 内到三边距离相等的点?(5)若将“两内角平分线BD,CE交于 F”改为“ABC 的两个外角平分线BD,CE交于F,如图 3-87(b),那么(1)(3)题的
4、结论是否会改变?怎样找ABC外到三边所在直线距离相等的点?共有多少个?说明:(1)通过此题达到巩固角平分线的性质定理(第(1)题)和判定定理(第(2)题)的目的(2)此题提供了证明“三线共点”的一种常用方法:先确定两条直线交于某一点,再证明这点在第三条直线上。(3)引导学生对题目的条件进行类比联想(第(5)题),观察结论如何变化,培养发散思维能力文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:C
5、S2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9
6、S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:C
7、S2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9
8、S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:C
9、S2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9
10、S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5名师精编优秀
11、教案练习 2 已知 ABC,在 ABC 内求作一点P,使它到 ABC 三边的距离相等练习 3 已知:如图 3 88,在四边形 ABCD中,ABAD,AB BC,AD DC 求证:点C在DAB的平分线上例 2 已知:如图 3 89,OE平分 AOB,EC OA于 C,EDOB 于 D求证:(1)OCOD;(2)OE垂直平分CD 分析:证明第(1)题 时,利用“等角的余角相等”可得到OEC OED,再利用角平分线的性质定理得到 OC OD 这样处理,可避免证明两个三角形全等练习 4 课本第 54 页的练习.说明:训练学生将生活语言翻译成数学语言的能力三、互逆命题,互逆定理的定义及应用1互逆命题、互
12、逆定理的定义教师引导学生分析角平分线的性质,判定定理的题设、结论,使学生看到这两个命题的题设和结论正好相反,得出互逆命题、互逆定理的定义,并举出学过的互逆命题、互逆定理的例子 教师强调“互逆命题”是两个命题之间的关系,其中任何一个做为原命题,那么另一个就是它的逆命题2会找一个命题的逆命题,并判定它是真、假命题例 3 写出下列命题的逆命题,并判断(1)(5)中原命题和它的逆命题是真命题还是假命题:(1)两直线平行,同位角相等;(2)直角三角形的两锐角互余;(3)对 顶角相等;(4)全等三角形的对应角相等;(5)如果|x|y|,那么 xy;(6)等腰三角形的两个底角相等;(7)直角三角形两条直角边
13、的平方和等于斜边的平方说明:注意逆命题语言的准确描述,例如第(6)题的逆命题不能说成是“两底角相等的三角形是等腰三角形”3理解互逆命题、互逆定理的有关结论例 4 判断下列命题是否正确:(1)错误的命题没有逆命题;(2)每个命题都有逆命题;(3)一个真命题的逆命题一定是正确的;(4)一个假命题的逆命题一定是错误的;文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X
14、5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编
15、码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X
16、5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编
17、码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X
18、5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编
19、码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5名师精编优秀教案(5)每一个定理都一定有逆定理
20、通过此题使学生理解互逆命题的真假性关系及互逆定理的定义四、师生共同小结1角平分线的性质定理与判定定理的条件内容分别是什么?2三角形的角平分线有什么性质?怎样找三角形内到三角形三边距离相等的点?3怎样找一个命题的逆命题?原命题与逆命题是否同真、同假?五、作业课本第 55 页第 3,5,6,7,8,9 题课堂教学设计说明本教学设计需2 课时完成角平分线是符合某种条件的动点的集合,因此,利用教具,投影或计算机演示动点运动的过程和规律,更能展示知识的形成过程,有利于学生自己观察,探索新知识,从中提高兴趣,以充分培养能力,发挥学生学习的主动性文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB
21、2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N
22、1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB
23、2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N
24、1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB
25、2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N
26、1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5文档编码:CS2Y4N1S4E8 HO8V6X5Q9S6 ZB2Y4W2W3J5