《2021-2022学年基础强化北师大版八年级数学下册第一章三角形的证明专题攻克试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化北师大版八年级数学下册第一章三角形的证明专题攻克试题(含答案解析).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第一章三角形的证明专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,C90,点D为BC上一点,DEAB于E,并且DEDC,F为AC上一点,则下列结论中正确的是
2、()ADEDFBBDFDC12DABAC2、如图,AB=AC,A=40,AB的垂直平分线DE交AC于点E,垂足为D,则EBC的度数是()A30B40C70D803、如图,AD是ABC的角平分线,作AD的垂直平分线EF交BC的延长线于点F,连接AF下列结论:;其中命题一定成立的有( )A1个B2个C3个D4个4、如图,在等腰中,BD平分,交AC于点D,若cm,则的周长为( )A8cmB10cmC12cmD14cm5、下列以a,b,c为边的三角形不是直角三角形的是( )Aa1,b1,c2Ba2,b3,c13Ca3,b5,c7Da6,b8,c106、已知下列命题中:有两条边分别相等的两个直角三角形全
3、等;有一条腰相等的两个等腰直角三角形全等;有一条边与一个锐角分别相等的两个直角三角形全等;顶角与底边分别对应相等的两个等腰三角形全等其中真命题的个数是()A1B2C3D47、下列三个数为边长的三角形不是直角三角形的是( )A3,3,B4,8,C6,8,10D5,5,8、下列说法正确的是()A全等三角形是指形状相同的两个三角形B全等三角形的周长和面积分别相等C所有的直角三角形都是全等三角形D所有的等边三角形都是全等三角形9、如图,在ABC中,点D为边AB的中点,点P在边AC上,则周长的最小值等于( )ABCD10、如图,在ABC中,cm,的垂直平分线交于点,交于点,的垂直平分线交于点,交于点,则
4、的长为( )A4cmB3cmC2cmD1cm第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知ABC是等腰三角形,若A70,则B_2、如图,在ABC中,ACB=90,B =30,CD是高若AD=2,则BD=_3、如图,在ABC中,的平分线与的垂直平分线交于点,将沿(在上,在上)折叠,点与点恰好重合,则的度数为_4、如图,在33正方形网格中,A、B在格点上,在网格的其它格点上任取一点C,能使ABC为等腰三角形的概率是_5、如图,是的平分线,于点,于点,ABC的面积是36,则的长是_三、解答题(5小题,每小题10分,共计50分)1、ABC中,ABAC,BD平分ABC交AC
5、于点D,从点A作AEBC交BD的延长线于点E(1)若BAC40,求E的度数;(2)点F是BE上一点,且FEBD取DF的中点H,请问AHBE吗?试说明理由2、如图,ABC中,ABAC,D为BC边的中点,AFAD,垂足为A求证:123、如图1,在平面直角坐标系xOy中,点A-4,0,B4,0,C0,4,给出如下定义:若P为ABC内(不含边界)一点,且AP与BCP的一条边相等,则称P为ABC的友爱点(1)在P10,3,P2-1,1,中,ABC的友爱点是_;(2)如图2,若P为ABC内一点,且PAB=PCB=15,求证:P为ABC的友爱点;(3)直线l为过点M0,m,且与x轴平行的直线,若直线l上存在
6、ABC的三个友爱点,直接写出m的取值范围4、如图,已知ABC是等边三角形,BD是AC上的高线作AEAB于点A,交BD的延长线于点E取BE的中点M,连结AM(1)求证:AEM是等边三角形;(2)若AE1,求ABC的面积5、如图,一次函数yx+3的图象与x轴和y轴分别交于点A和点B,将AOB沿直线CD对折,使点A与点B重合,直线CD与x轴交于点C,与AB交于点D(1)点A的坐标为 ,点B的坐标为 ;(2)求OC的长度;(3)在x轴上有一点P,且PAB是等腰三角形,不需计算过程,直接写出点P的坐标-参考答案-一、单选题1、C【分析】在直角三角形DCF中,利用斜边长度大于直角边长度,可以得到DFDC,
7、又DCDE,所以DFDE,故A选项错误,同理,D选项错误,假设BDFD,则可以判定DBEDFC,所以BDFC,而在题目中,B是定角,DFC随着F的变化而变化,假设不成立,故B选项是错误的,由DEDC,DCAC,DEAB,根据RtDEARtDCA(HL)得到C选项是正确的【详解】解:(1)在直角三角形DCF中,利用斜边长度大于直角边长度,可以得到DFDC,又DCDE,所以DFDE,故A选项错误;(2)BDE与DCF,只满足DEBDCF90,DCDE的条件,不能判定两个三角形全等,故不能得到BDFD,另一方面,假设BDFD,在RtDBE与DFC中,RtDBERtDFC(HL),BDFC,而图中B大
8、小是固定的,DFC的大小随着F的变化而变化,故上述假设是不成立的,故B选项错误;(3)DCAC,DEAB,DCDE,在RtDEA和RtDCA中,RtDEARtDCA(HL),12,故C选项正确;(4)在直角三角形ABC中,利用斜边长度大于直角边长度,可以得到ABAC,故D选项错误,故选:C【点睛】本题考查了全等三角形的性质与判定,三角形三边不等关系关系,掌握全等三角形的性质与判定,直角三角形三边关系是解题关键2、A【分析】先由线段垂直平分线的性质得到AE=BE,则ABE=A=40,再由三角形内角和定理和等腰三角形的性质得到,由此即可得到答案【详解】解:AB的垂直平分线DE交AC于点E,AE=B
9、E,ABE=A=40,AB=AC,EBC=ABCABE=30故选A【点睛】本题主要考查了线段垂直平分线的性质,三角形内角和定理,等腰三角形的性质与判定,熟知相关知识是解题的关键3、C【分析】根据垂直平分线的性质和线段垂直平分线的性质即可判断;根据BAF=BAD+DAF,ACF=DAC+ADF,即可判断;根据BAF不一定为90,则ACF不一定为90,即可判断【详解】解:EF是线段AD的垂直平分线,AF=DF,故正确;ADF=DAF,过点D分别作DHAB于H,DGAC于G,AD平分BAC,DH=DG,BAD=CAD,故正确;BAF=BAD+DAF,ACF=DAC+ADF,BAF=ACF,故正确;B
10、AF不一定为90,ACF不一定为90,AF与BC不一定垂直,故错误,故选C【点睛】本题主要考擦了线段垂直平分线的性质,角平分线的性质,熟知角平分线和线段垂直平分线的性质是解题的关键4、B【分析】根据角平分线上的点到角的两边距离相等可得DE=AD,利用“HL”证明RtABD和RtEBD全等,根据全等三角形对应边相等可得AB=BE,然后求出DEC的周长=BC,再根据BC=10cm,即可得出答案【详解】解:BD是ABC的平分线,DEBC,A=90,在RtABD和RtEBD中,AB=BE,DEC的周长=DE+CD+CE=AD+CD+CE,=AC+CE,=AB+CE,=BE+CE,=BC,BC=10cm
11、,DEC的周长是10cm故选:B【点睛】本题考查的是角平分线的性质,全等三角形的判定与性质,熟记各性质并求出DEC的周长=BC是解题的关键5、C【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可如果有这种关系,这个就是直角三角形【详解】解:、,该三角形是直角三角形,故此选项不符合题意;、,该三角形是直角三角形,故此选项不符合题意;、,该三角形不是直角三角形,故此选项符合题意;、,该三角形是直角三角形,故此选项不符合题意;故选:C【点睛】本题考查了勾股定理的逆定理,解题的关键是在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,
12、再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断6、C【分析】根据全等三角形的判定、等腰三角形和直角三角形的性质逐个排查即可【详解】解:由于SSA不能判定三角形全等,则有两条边分别相等的两个直角三角形不一定全等,故原命题是假命题;由于满足ASA,则有一条腰相等的两个等腰直角三角形全等,故原命题是真命题;有一条边与一个锐角分别相等即可能为ASA或AAS,故原命题是真命题;由于两等腰三角形顶角相等,则他们的底角对应相等,再结合底相等,满足ASA,故原命题是真命题其中真命题的个数是3个故选:C【点睛】本题主要考查了全等三角形的判定、等腰三角形和直角三角形的性质等知识点,灵活应用相关知识
13、成为解答本题的关键7、D【分析】根据勾股定理的逆定理,若两条短边的平方和等于最长边的平方,那么就能够成直角三角形来判断【详解】解:A、3232()2,能构成直角三角形,故此选项不合题意;B、42()282,能构成直角三角形,故此选项不符合题意;C、6282102,能构成直角三角形,故此选项不合题意;D、5252()2,不能构成直角三角形,故此选项符合题意故选:D【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断8、B【分析】根据全等三角形的性质,等边三角形的性质判断即可【详解】
14、解:A、全等三角形是指形状和大小相同的两个三角形,该选项错误;B、全等三角形的周长和面积分别相等,该选项正确;C、所有的直角三角形不一定都是全等三角形,该选项错误;D、所有的等边三角形不一定都是全等三角形,该选项错误;故选:B【点睛】本题考查的是全等三角形的性质,掌握全等形的概念,全等三角形的性质是解题的关键9、C【分析】作点B关于AC的对称点H,连接HP、HD,由轴对称的性质可知,由题意易得,则有,然后由三角形周长公式可知,要使其最小,则需满足H、P、D三点共线即可,进而问题可求解【详解】解:作点B关于AC的对称点H,连接HP、HD,如图所示:,点D为边AB的中点,(SAS),要使其最小,则
15、需满足H、P、D三点共线,即的最小值为HD的长,的周长最小值为;故选C【点睛】本题主要考查轴对称的性质、含30度直角三角形的性质及全等三角形的性质与判定,熟练掌握轴对称的性质、含30度直角三角形的性质及全等三角形的性质与判定是解题的关键10、C【分析】此类题要通过作辅助线来沟通各角之间的关系,首先求出BMA与CNA是等腰三角形,再证明MAN为等边三角形即可【详解】解:连接AM,AN,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,BMAM,CNAN,MABB,CANC,BAC120,ABAC,BC30,BAMCAN60,AMNANM60,AMN是等边三角形,AM
16、ANMN,BMMNNC,BC6cm,MN2cm故答案为2cm故选:C【点睛】本题考查的知识点为线段的垂直平分线性质以及等腰三角形的性质;正确作出辅助线是解答本题的关键二、填空题1、或或【分析】分是顶角,是底角,是底角,是底角,是底角,是顶角三种情况,再根据等腰三角形的定义、三角形的内角和定理即可得【详解】解:由题意,分以下三种情况:当是顶角,是底角时,则;当是底角,是底角时,则;当是底角,是顶角时,则;综上,的度数为或或,故答案为:或或【点睛】本题考查了等腰三角形、三角形的内角和定理,正确分三种情况讨论是解题关键2、6【分析】求出A,求出ACD,根据含30度角的直角三角形性质求出AC2AD,A
17、B2AC,求出AB即可【详解】解:CDAB,ACB90,ADC90ACB,B30,A90B60,ACD90A30,AD2,AC2AD4,AB2AC8,BDABAD826,故答案为:6【点睛】本题主要考查的是含角的直角三角形性质和三角形内角和定理的应用,关键是求出AC2AD,AB2AC3、140【分析】连接OB、OC,根据角平分线的定义求出BAO,根据等腰三角形两底角相等求出ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得OAOB,根据等边对等角可得ABOBAO,再求出OBC,然后判断出点O是ABC的外心,根据三角形外心的性质可得OBOC,再根据等边对等角求出OCBOBC,根据翻折的
18、性质可得OECE,然后根据等边对等角求出COE,再利用三角形的内角和定理列式计算即可【详解】解:如图:连接OB、OC,BAC70,AO为BAC的平分线,BAOBAC7035,又ABAC,ABC(180BAC)(18070)55,DO是AB的垂直平分线,OAOB,ABOBAO35,OBCABCABO553520,AO为BAC的平分线,ABAC,OBOC,点O在BC的垂直平分线上,又DO是AB的垂直平分线,点O是ABC的外心,OCBOBC20,将C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,OECE,COEOCB20,在OCE中,OEC180COEOCB1802020140,故答案为
19、:140【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,作辅助线,构造出等腰三角形是解题的关键4、【分析】分三种情况:点A为顶点;点B为顶点;点C为顶点;得到能使ABC为等腰三角形的点C的个数,再根据概率公式计算即可求解【详解】如图,AB,若ABAC,符合要求的有3个点;若ABBC,符合要求的有2个点;若ACBC,不存在这样格点这样的C点有5个能使ABC为等腰三角形的概率是故答案为:【点睛】此题考查等腰三角形的判定和概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果
20、,那么事件A的概率P(A)5、#【分析】根据角平分线性质,得出DE=DF,利用SABC=SABD+SBCD得出,求解即可【详解】解:是的平分线,DE=DF,SABC=SABD+SBCD=,解得故答案为【点睛】本题考查角平分线性质,三角形面积,一元一次方程,掌握角平分线性质,三角形面积,一元一次方程,关键是利用SABC=SABD+SBCD列出方程三、解答题1、(1)E35;(2)AHBE理由见解析【分析】(1)根据等腰三角形两底角相等,已知顶角,可以求出底角,再根据角平分线的定义求出CBD的度数,最后根据两直线平行,内错角相等求出;(2)由“SAS”可证ABDAEF,可得AD=AF,由等腰三角形
21、的性质可求解【详解】解:(1)AB=AC,ABC=ACB,BAC=40,ABC=(180-BAC)=70,BD平分ABC,CBD=ABC=35,AEBC,E=CBD=35;(2)BD平分ABC,E=CBD,CBD=ABD=E,AB=AE,在ABD和AEF中,ABDAEF(SAS),AD=AF,点H是DF的中点,AHBE【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,证明三角形全等是解题的关键2、见详解【分析】根据等腰三角形三合一性质以及等边对等角性质得出ADBC,B=C,根据AFAD,利用在同一平面内垂直同一直线的两直线平行得出AFBC,利用平行线性质得出1=B,2=C即可【详解】
22、证明:ABC中,ABAC,D为BC边的中点,ADBC,B=C,AFAD,AFBC,1=B,2=C,12【点睛】本题考查等腰三角形性质,平行线的判定与性质,掌握等腰三角形性质,平行线的判定与性质是解题关键3、(1)P1、P2;(2)见解析;(3)0m2【分析】(1)根据A(x1,y1)、和B(x2,y2)之间的距离公式AB=以及友爱点定义解答即可;(2)由题意易知OAB=OCA=OCB=45,进而可求得PAC=OCP=30,则可得出ACP=APC=75,根据等角对等边和友爱点定义即可证得结论;(3)由题意,ABC在友爱点P满足AP=BP或AP=PC或AP=BC=AC三种情况,分别讨论求解即可【详
23、解】解:(1)点,关于y轴对称,点在y轴上,AP1=BP1,故P1是的友爱点;AP2= ,CP2= ,AP2= CP2,故P1是的友爱点;AP3=,CP3=,BP3=,BC=,故P3不是的友爱点,综上,的友爱点是P1、P2,故答案为:P1、P2;(2)点,OA=OB=OC,AC= BC, BOC=90,OAB=OCA=OCB=45,PAC=OCP=30,ACP=45+30=75,APC=180PACACP=1803075=75,ACP=APC,AP=AC=BC,P为的友爱点;(3)由题意,ABC的友爱点P满足AP=BP或AP=PC或AP=BC三种情况,若AP=BP,则点P在线段AB的垂直平分线
24、上,即点P在y轴线段OC上,若AP=PC,则点P在线段AC的垂直平分线上;若AP=BC,则点P在以点A为圆心,BC即AC长为半径的圆上,如图,设AC的中点为G,则G的坐标为(2,2),由图可知,当直线l为过点G和过点且与轴平行的直线在x轴之间时,直线上存在的三个友爱点,m的取值范围为0m2【点睛】本题考查两点之距离坐标公式、线段垂直平分线的判定与性质、等腰三角形的判定与性质、三角形的内角和定理、圆的定义、坐标与图形等知识,理解题中定义,熟练掌握相关知识的联系与运用,利用数形结合的思想解决问题是解答的关键4、(1)见解析;(2)【分析】(1)利用条件可求得E60且利用直角三角形的性质可得出MEA
25、M,可判定AEM的形状;(2)由条件利用勾股定理可求得AB和BD的长,可求出ABC的面积【详解】解:(1)ABC是等边三角形,BD是AC边上的高线,AEAB,ABD30,E60,点M是BE的中点,在RtABE中,AMBEEM,AEM是等边三角形;(2)AE1,EAB90,ABD30BE2AE2,由勾股定理得:AB, ABACBC,ADAB,BD,SABC【点睛】本题主要考查等边三角形的判定和性质、勾股定理以及直角三角形中,30所对的边是斜边的一半,掌握等边三角形的性质和判定是解题的关键5、(1),;(2);(3)或或或【分析】(1)求出当时的值可得点的坐标,求出当时的值可得点的坐标;(2)先根
26、据点的坐标可得的长,再根据折叠的性质可得,设,从而可得的长,然后在中,利用勾股定理即可得;(3)设点的坐标为,根据等腰三角形的定义分,三种情况,再利用两点之间的距离公式建立方程,解方程即可得【详解】解:(1)对应一次函数,当时,解得,即,当时,即,故答案为:,;(2),由折叠的性质得:,设,则,在中,即,解得,即的长度为;(3)设点的坐标为,则,根据等腰三角形的定义,分以下三种情况:当时,是等腰三角形,则,解得,此时点的坐标为或(与点重合,不符题意,舍去);当时,是等腰三角形,则,解得或,此时点的坐标为或;当时,是等腰三角形,则,解得,此时点的坐标为;综上,点的坐标为或或或【点睛】本题考查了一次函数、折叠的性质、等腰三角形的定义等知识点,较难的是题(3),正确分三种情况讨论是解题关键