《2021-2022学年人教版九年级数学下册第二十九章-投影与视图专项攻克试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年人教版九年级数学下册第二十九章-投影与视图专项攻克试题(含详细解析).docx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十九章-投影与视图专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,几何体的左视图是( )ABCD2、一个矩形木框在太阳光的照射下,在地面上的投影不可能是( )ABCD
2、3、如图,该几何体的主视图是( )ABCD4、下列几何体中,从正面看和从左面看形状均为三角形的是()ABCD5、图1、图2均是正方体,图3是由一些大小相同的正方体搭成的几何体从正面看和左面看得到的形状图,小敏同学经过研究得到如下结论:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中ABC45;(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则ab19其中正确结论的个数有( )A1个B2个C3个D4个
3、6、下列哪种光线形成的投影是平行投影()A太阳B探照灯C手电筒D路灯7、如图所示的立体图形是一个圆柱被截去四分之一后得到的几何体,它的左视图是( )ABCD8、如图所示的几何体的从左边看的视图是()ABCD9、如图所示的几何体的主视图是()ABCD10、如图所示的几何体从左面看到的图形是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个正三棱柱的三视图如图所示,若这个正三棱柱的侧面积为12,则a的值_2、长方体的长为,宽为,高为,点离点,一只蚂蚁如果要沿着长方体的表面从点爬到点去吃一滴蜜糖,需要爬行的最短距离是_3、一幢4层楼房只有一个窗户亮着一盏灯,一
4、棵小树和一根电线杆在窗口灯光下的影子如图所示,则亮着灯的窗口是_号窗口4、一个直九棱柱底面的每条边长都等于3cm,侧边长都等于6cm,则它的侧面面积等于 _cm25、一个几何体的三视图如图所示,则该几何体的表面积是_三、解答题(5小题,每小题10分,共计50分)1、用小正方体搭成一个几何体,使得从正面看、从上面看该几何体得到的图形如图所示问: (1)这样的几何体只有一种吗?它最多需要多少个小正方体?(2)它最少需要多少个小正方体?请分别画出这两种情况下从左面看该几何体得到的图形2、画出从3个方向看如图所示几何体的形状图3、已知,如图,AB和DE是直立在地面上的两根立柱,AB2m,某一时刻AB在
5、太阳光下的投影BC1m(1)请你在图中画出此时DE在太阳光下的投影EF;(2)在测量AB的投影时,同时测量出DE在太阳光下的投影EF1.5m,请你计算DE的长4、如图,是由若干个完全相同的小正方体组成的一个几何体(1)请画出这个几何体的左视图和俯视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么请画出添加小正方体后所得几何体所有可能的主视图5、根据要求完成下列题目(1)图中有_块小正方体(2)请在方格纸中分别画出它的左视图和俯视图(画出的图都用铅笔涂上阴影)(3)用小正方体搭一几何体,使得它的俯视图和左视图与你在下图方格中所画的图一致,则这样的几
6、何体最少要_个小正方体,最多要_个小正方体-参考答案-一、单选题1、C【分析】找到从左面看所得到的图形,比较即可【详解】解:观察可知,从物体的左边看是一个竖长横短的长方形,由于右边有一条横向棱被遮挡看不见,画为虚线,如图所示的几何体的左视图是: 故选C【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图2、B【分析】根据平行投影的性质求解可得【详解】解:一张矩形纸片在太阳光线的照射下,形成影子不可能是等边三角形,故选:B【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影3、B【分析】找到从正面看所得到的图形即可,注意所有的看到的
7、棱都应表现在主视图中,看不到的棱需要用虚线来表示【详解】解:从正面看易得,该几何体的视图为B,故选:B【点睛】本题主要考查了三视图的知识,主视图是从物体的正面看得到的视图,掌握主视图的概念是解题的关键4、C【分析】根据几何体的三视图解答【详解】解:圆柱从正面看是长方形,故A选项不符合题意;四棱柱从正面看是长方形,故B选项不符合题意;圆锥从正面看是三角形,从左面看是三角形,故C选项符合题意;三棱柱从正面看是长方形,故D选项不符合题意;故选:C【点睛】此题考查简单几何体的三视图,正确掌握各几何体的三视图及视角的位置是解题的关键5、B【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着可判断(1
8、);正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形可判断(2)(3);作出相应的俯视图,标出搭成该几何体的小正方体的个数最多(少)时的数字即可为【详解】解:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;正确,因为正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,所以至少要剪开1257条棱(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;正确,因为用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC
9、中ABC45;错误,因为ABC是等边三角形,所以ABC606、A【分析】中心投影是指把光由一点向外散射形成的投影,平行投影是在一束平行光线照射下形成的投影,根据定义逐一分析即可得到答案.【详解】解:太阳光线形成的投影是平行投影,探照灯,手电筒,路灯形成的投影是中心投影,故选A【点睛】本题考查的是平行投影与中心投影的含义及应用,根据定义熟练判断中心投影与平行投影是解题的关键.7、C【分析】根据左视图的定义,左视图就是物体由左向右方投影得到的视图,即可得出结论【详解】解:根据左视图的定义,该几何体的左视图是:故选:C 【点睛】此题考查了几何体左视图的判断,掌握左视图的定义是解题关键8、C【分析】根
10、据左视图是从左面看到的图形判定则可【详解】解:从左边看,是一个大正方形右上角有一个小正方形,故选:C【点睛】本题考查简单组合体的三视图,正确掌握观察角度是解题关键9、A【分析】根据从正面看得到的图形是主视图,可得答案【详解】解:从正面看,如图:故选:A【点睛】此题考查小正方体组成的几何体的三视图,正确掌握几何体三视图的画法是解题的关键10、D【分析】左视图就是从几何体的左边看所得到的图形,实际上就是从左面“正投影”所得到的图形【详解】解:观察几何体,从左面看到的图形是两个大小不一的圆,如图所示: 故选:D【点睛】本题考查了几何体的三视图,解题的关键是正确理解三视图的意义二、填空题1、【解析】【
11、分析】观察给出的图形可知,正三棱柱的高是2,正三棱柱的底面正三角形的高是a,根据勾股定理可得底面边长为a,根据长方形的面积公式和这个正三棱柱的侧面积为12,可得关于a的方程,解方程即可求得a的值【详解】解:观察给出的图形可知,正三棱柱的高是2,正三棱柱的底面正三角形的高是a,则底面边长为a,依题意有a23=12,解得a=故答案为:【点睛】此题考查了由三视图判断几何体,关键是由三视图得到正三棱柱的高和底面边长2、25cm【解析】【分析】要求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果【详解】解:只要将长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如
12、图1:长方体的宽为10,高为20,点B与点C的距离是5,BD=CD+BC=10+5=15,AD=20,在直角三角形ABD中,根据勾股定理得:AB=25;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图2:长方体的宽为10,高为20,点B离点C的距离是5,BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:AB=;只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如图3:长方体的宽为10,高为20,点B离点C的距离是5,AC=CD+AD=20+10=30,在直角三角形ABC中,根据勾股定理得:AB=;蚂蚁爬行的最短距离是25cm
13、,故答案为:25cm【点睛】此题考查了轴对称-最短路线问题,本题是一道趣味题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可,正确掌握勾股定理及长方体的不同展开方式是解题的关键3、3【解析】【分析】根据给出的两个物高与影长即可确定光源的位置;【详解】如图所示:可知亮灯的窗口是3号窗口,故答案是3【点睛】本题主要考查了中心投影,准确分析判断是解题的关键4、162【解析】【分析】展开后底面一边长为7cm,求出底面的周长,用底面周长侧边长计算即可【详解】解:一个直九棱柱底面的每条边长都等于3cm,直九棱柱底面的周长为93=27cm;侧面积是276=162(cm2)故答案为162【点睛】本题
14、考查了几何体的侧面积的应用,关键是掌握直棱柱侧面积公式底面周长侧棱长5、48+64【解析】【分析】原几何体为圆柱的一半,且高为8,底面圆的半径为4,表面积由上下两个半圆及正面的正方形和侧面圆柱面积构成,分别求解相加可得答案【详解】解:由三视图可知:原几何体为圆柱的一半,(沿中轴线切开),由题意可知,圆柱的高为8,底面圆的半径为4,故其表面积为S42+48+8848+64故答案为:48+64【点睛】本题考查由几何体的三视图求面积,由三视图得出原几何体的形状和数据是解决问题的关键,属基础题三、解答题1、(1)不止一种,最多14个;(2)最小10个,画图见解析【分析】(1)由第2层的正方体的个数不同
15、,可得这样的几何体不止一种,再在俯视图的基础上确定每层正方体的数量最多时的正方体的数量,从而可得答案;(2)在俯视图的基础上确定每层正方体的数量最小时的正方体的数量,从而可得答案.【详解】解: (1)这样的几何体不止一种,正方体最多时的俯视图为:其中正方形中的数字表示正方体的数量,所以最多需要6+6+2=14个; (2)最少需要4+4+2=10个,正方体个数最多时的左视图为:正方体个数最小时俯视图为:此时左视图为:或正方体个数最小时俯视图为:此时左视图为:或正方体个数最小时俯视图为:此时的左视图为:或正方体个数最小时俯视图为:此时的左视图为:或正方体个数最小时俯视图为:此时的左视图为:或正方体
16、个数最小时俯视图为:此时的左视图为:【点睛】本题考查的是三视图,掌握三视图的定义,清晰的分类讨论是画图的关键.2、见解析【分析】从正面看有3列,每列小正方形数目分别为1,3,1;从左面有1列,小正方形数目为3;从上面看有3列,每行小正方形数目分别为1,1,1;【详解】解:如图所示:【点睛】本题考查了实物体的三视图在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉本题画几何体的三视图时应注意小正方形的数目及位置3、(1)画图见解析;(2)DE=3米【分析】(1)连接AC,过D点做AC平行线,交EB与点F,即可得投影EF(2)太阳光属于平行光源,故
17、,故,所以DE=3.【详解】(1)如图所示:(2)DE/ACEFD=BCADE=3米【点睛】本题考查了平行投影以及相似三角形的判定和性质,在实际生活中,处处都存在相似三角形.当我们与其接触时,就能利用相似的相关知识去识别和解决实际生活中的问题,如同一时刻物高与影长的问题4、(1)见解析;(2)5种【分析】(1)由已知条件可知,左视图有2列,每列小正方数形数目分别为3、1,俯视图有3列,每列小正方数形数目分别为2、1、1,据此可画出图形;(2)左视图和俯视图不变得出:主视图的第一列不能变化,第2列加一个,第3列加一个或两个,共5种情况【详解】(1)画图如下:(2)左视图和俯视图不变得出:主视图的
18、第一列不能变化,第2列加一个,第3列加一个或两个,共5种情况【点睛】本题考查了几何体的三视图画法由立体图形,可知主视图、左视图、俯视图,并能得出有几列以及每一列上的数字5、(1)6;(2)见解析;(3)5,7【分析】(1)根据图形知图形的层数及各层的块数,相加即得;(2)根据三视图的画法解答;(3)最少时只能将竖列的两个的最上一个去掉,最多时在两个的最上加一个【详解】解:由图知,图形共有3层,最下层有3块小正方体,中间一层有2块,最上一层有1块,图中共有1+2+3=6块小正方体,故答案为:6;(2)如图:(3)如图,用小正方体搭一几何体,使得它的俯视图和左视图与你在下图方格中所画的图一致,则这样的几何体最少要5个,最多需要7个,故答案为:5,7【点睛】此题考查画小正方体构成的立体图形的三视图,数小正方体的个数,正确掌握立体图形的三视图的画法是解题的关键