《2022年最新人教版初中数学七年级下册-第六章实数综合测试试卷(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年最新人教版初中数学七年级下册-第六章实数综合测试试卷(无超纲).docx(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册 第六章实数综合测试(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C所表示的数是( )ABCD2、下列各数中,3.1415,0.321,2.32232223(相邻两个3之间的2的个数逐次增加1),无理数有( )A0个B1个C2个D3个3、实数2的倒数是()A2B2CD4、的相反数是( )ABCD35、在下列实数中,无理数是( )ABCD6、100的算术平方根是( )A10BCD7、3的算术平方根为( )AB
2、9C9D8、若一个数的算术平方根与它的立方根的值相同,则这个数是( )A1B0和1C0D非负数9、无理数是( )A带根号的数B有限小数C循环小数D无限不循环小数10、下列各数是无理数的是( )AB3.33CD二、填空题(5小题,每小题4分,共计20分)1、已知为的整数部分,则_(填“”“”或“=”)2、近几年来魔术风靡我国,小亮发明了一个魔术盒,把一个实数对(,)放入其中,就得到一个数为231,如把(3,2)放入其中,就得到323214,若把(3,2)放入其中,得到数,再把(,4)放入其中,则得到的数是_3、若实数满足,则=_4、若一个正数的两个不同的平方根为2a+1和3a11,则a_5、如果
3、,那么_三、解答题(5小题,每小题10分,共计50分)1、已知:的立方根是3,16的算术平方根是,求:(1)、的值;(2)2、对于有理数a,b,定义运算:(1)计算的值; (2)填空_:(填“”、“”或“”)(3)与相等吗?若相等,请说明理由3、用“#”定义一种新的运算:对于任意有理数a和b,规定a#bab2+2ab-b如:1#2122+212-26(1)(2)#3;(2)若(m+1)#468,求m的值4、(1)已知,求x的值(2)已知与是正数m的平方根,求m的值5、求下列各数的算术平方根:(1)0.64 (2)-参考答案-一、单选题1、C【分析】首先根据数轴上表示1,的对应点分别为A,B可以
4、求出线段AB的长度,然后由ABAC利用两点间的距离公式便可解答【详解】解:数轴上表示1,的对应点分别为A,B,AB1,点B关于点A的对称点为C,ACAB点C的坐标为:1(1)2故选:C【点睛】本题考查的知识点为:求数轴上两点间的距离就让右边的数减去左边的数知道两点间的距离,求较小的数,就用较大的数减去两点间的距离2、D【分析】理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】3.1415,0.321是有限小数,属于有理数;是分数,属于有理数;无理数有,2.32232223(相邻两个3之间的2
5、的个数逐次增加1),共3个故选:D【点睛】此题考查了无理数解题的关键是掌握实数的分类3、D【分析】根据倒数的定义即可求解【详解】解:-2的倒数是故选:D【点睛】本题考查了倒数的定义,熟知倒数的定义“乘积等于1的两个数互为倒数”是解题关键4、A【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数【详解】解:的相反数是,故选:A【点睛】此题主要考查相反数,解题的关键是熟知实数的性质5、D【分析】根据无理数的定义对选项进行分析即可得到答案.【详解】解:A、是分数,即为有理数,选项说法不正确,不符合题意;B、,即为有理数,选项说法不正确,不符合题意;C、,即为有理数,选项说法不正确,不符合题
6、意;D、是无限不循环小数,即为无理数,选项说法正确,符合题意;故选D【点睛】本题考查了无理数的定义,解题的关键是掌握无理数的定义:无限不循环小数称为无理数6、A【分析】根据算术平方根的概念:一个正数x的平方等于a,即,那么这个正数x就叫做a的算术平方根,即可解答【详解】解:,(舍去)100的算术平方根是10,故选A【点睛】本题考查了算术平方根,解题的关键是熟练掌握算术平方根的概念7、A【分析】利用算术平方根的定义求解即可【详解】3的算术平方根是故选:A【点睛】本题考查的是算术平方根的概念,属于基础题目,掌握算术平方根的概念是解题的关键8、B【分析】根据立方根和算术平方根的性质可知,立方根等于它
7、本身的实数0、1或-1,算术平方根等于它本身的实数是0或1,由此即可解决问题【详解】解:立方根等于它本身的实数0、1或1,算术平方根等于它本身的数是0和1,一个数的算术平方根与它的立方根的值相同的是0和1,故选B【点睛】主要考查了立方根,算术平方根的性质牢牢掌握立方根和算术平方根等于它本身的实数是解答本题的关键点9、D【详解】解:无理数是无限不循环小数故选:D【点睛】本题主要考查了无理数的定义,熟练掌握无限不循环小数是无理数是解题的关键10、C【分析】无理数是指无限不循环小数,由此概念以及立方根的定义分析即可【详解】解:,是有理数,3.33和是有理数,是无理数,故选:C【点睛】本题考查求一个数
8、的立方根,以及无理数的识别,掌握立方根的定义以及无理数的基本定义是解题关键二、填空题1、【解析】【分析】根据,得到a为7,代入计算比较大小即可【详解】解:为的整数部分,且,a7,2,故答案为:【点睛】本题考查了无理数的估值,掌握无理数估值的方法是解题的关键2、5【解析】【分析】由魔术盒的性质可知m=(-3)2-3214,故(4,4)在魔术盒中的数字为(4)2-3415【详解】将(3,2)代入2-31有(-3)2-3214故m=4再将(4,4)代入2-31有(4)2-3415故答案为:5【点睛】本题考查了新定义下的实数运算,按照定义的运算公式代入计算即可3、1【解析】【分析】根据绝对值与二次根式
9、的非负性求出a,b的值,故可求解【详解】解:a-2=0,b-4=0a=2,b=4=故答案为:1【点睛】此题主要考查代数式求值,解题的关键是熟知非负性的运用4、2【解析】【分析】根据一个正数的两个不同的平方根互为相反数列方程即可【详解】解:一个正数的两个不同的平方根分别是2a+1和3a11,解得故答案为: 2【点睛】本题考查了平方根的意义和解一元一次方程,解题关键是明确一个正数的两个不同的平方根互为相反数,根据题意列出方程5、【解析】【分析】本题可利用立方根的定义直接求解【详解】,故填:【点睛】本题考查立方根的定义:如果一个数的立方等于a,则这个数称为a的立方根使用时和平方根定义对比记忆三、解答
10、题1、(1),;(2)【解析】【分析】(1)根据立方根和算术平方根的意义求出、的值;(2)代入、的值求解即可【详解】解:(1)的立方根是3,16的算术平方根是,解得,;(2)把,代入得,【点睛】本题考查了算术平方根和立方根的意义,会熟练运用算术平方根和立方根求出、的值是解题关键2、(1);(2)=;(3)相等,证明见详解【解析】【分析】(1)按照给定的运算程序,一步一步计算即可; (2)先按新定义运算,再比较大小; (3)按新定义分别运算即可说明理由【详解】解:(1);(2),=,故答案是:=;(3)相等,=【点睛】此题是定义新运算题型,直接把对应的数字代入所给的式子可求出所要的结果3、(1)
11、 -33;(2)m的值为2【解析】【分析】(1)原式利用已知的新定义计算即可得到结果;(2)已知等式利用已知新定义化简,列出关于的方程,解之即可求出【详解】(1)根据题中新定义得:;(2)根据题中新定义得: 已知等式整理得:,解得:【点睛】本题考查了解一元一次方程,以及有理数的混合运算,熟练掌握运算法则是解本题的关键4、(1)3或-1(2)9【解析】【分析】(1)根据平方根的含义和求法,求出x的值即可(2)根据一个正数的平方根互为相反数可得出a的值,继而得出这个正数m【详解】解:(1)(x-1)2=4,x-1=2,x=3或-1(2)与是正数m的平方根,=0,解得:a=-1,则这个正数的值为m=2(-1)-12=9【点睛】此题主要考查了平方根解题的关键是掌握平方根的知识,掌握一个正数的平方根互为相反数5、 (1) 0.8; (2) 【解析】【分析】根据算术平方根的定义求解即可【详解】解:(1)因为082=0.64,所以0.64的算术平方根是0.8,即=0.8(2)因为,所以的算术平方根是,即【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根