《2021-2022学年京改版八年级数学下册第十四章一次函数单元测试试卷(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年京改版八年级数学下册第十四章一次函数单元测试试卷(无超纲).docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十四章一次函数单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一次函数的图象经过点,则下列结论正确的是( )A图像经过一、二、三象限B关于方程的解是CD随的增大而减小2
2、、已知正比例函数ykx的函数值y随x的增大而减小,则一次函数ykxk的图象大致是()ABCD3、下列命题中,真命题是( )A若一个三角形的三边长分别是a、b、c,则有B(6,0)是第一象限内的点C所有的无限小数都是无理数D正比例函数()的图象是一条经过原点(0,0)的直线4、如图,图中的函数图象描述了甲乙两人越野登山比赛(x表示甲从起点出发所行的时间,表示甲的路程,表示乙的路程)下列4个说法:越野登山比赛的全程为1000米;甲比乙晚出发40分钟;甲在途中休息了10分钟;乙追上甲时,乙跑了750米其中正确的说法有( )个A1B2C3D45、若点在第三象限,则点在( )A第一象限B第二象限C第三象
3、限D第四象限6、根据下列表述,能够确定具体位置的是()A北偏东25方向B距学校800米处C温州大剧院音乐厅8排D东经20北纬307、已知一次函数yaxb(a0)的图象经过点(0,1)和(1,3),则ba的值为( )A1B0C1D28、点A(-3,1)到y轴的距离是()个单位长度A-3B1C-1D39、已知点A(x+2,x3)在y轴上,则x的值为()A2B3C0D310、已知点A(2,y1)和B(1,y2)都在直线y3x1上,则y1,y2的大小关系是()Ay1y2By1y2Cy1y2D大小不确定第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、先设出_,再根据条件确定解析式
4、中_,从而得出函数解析式的方法,叫待定系数法2、一次函数y1axb与y2mxn的部分自变量和对应函数值如下表:x0123y121x0123y23113则关于x的方程axmxnb的解是_3、如图,已知直线:与直线:相交于点:,则关于x的不等式的解集为 _4、已知直线yax1与直线y=2x+1平行,则直线yax1不经过第 _象限5、某长途汽车客运公司规定旅客可免费携带一定质量的行李当行李的质量超过规定时,需付的行李费(元)与行李质量之间满足一次函数关系,部分对应值如下表:304050(元)468则旅客最多可免费携带行李的质量是_kg三、解答题(5小题,每小题10分,共计50分)1、某水果店进行了一
5、次水果促销活动,在该店一次性购买A种水果的单价y(元)与购买量x(千克)的函数关系如图所示,(1)当时,单价y为_元;当单价y为8.8元时,购买量x(千克)的取值范围为_;(2)根据函数图象,当时,求出函数图象中单价y(元)与购买量x(千克)的函数关系式;(3)促销活动期间,张亮计划去该店购买A种水果10千克,那么张亮共需花费多少元?2、已知A、B两地之间有一条公路甲车从A地出发匀速开往B地,甲车出发两小时后,乙车从B地出发匀速开往A地,两车同时到达各自的目的地两车行驶的路程之和y(千米)与甲车行驶的时间x(小时)之间的函数关系如图所示(1)甲车的速度为 千米/时,a的值为 (2)求乙车出发后
6、,y与x之间的函数关系式3、我们知道,海拔高度每上升1千米,温度下降6 某时刻,连云港地面温度为20 ,设高出地面x千米处的温度为y (1)写出y与x之间的函数关系式(2)已知连云港玉女峰高出地面约600米,求这时山顶的温度大约是多少度?(3)此刻,有一架飞机飞过连云港上空,若机舱内仪表显示飞机外面的温度为34 ,求飞机离地面的高度为多少千米?4、已知直线l1:y-xb与x轴交于点A,直线l2:yx与x轴交于点B,直线l1、l2交与点C,且C点的横坐标为1(1)求直线l1的解析式;(2)过点A作x轴的垂线,若点P为垂线上的一个动点,点Q为y轴上的一个动点,当CPPQQA的值最小时,求此时点P的
7、坐标;(3)E点的坐标为(2,0),将直线l1绕点C顺时针旋转,使旋转后的直线l3刚好过点E,过点C作平行于x轴的直l4,点M、N分别为直线l3、l4上的两个动点,是否存在点M、N,使得BMN是以M点为直角顶点的等腰直角三角形,若存在,直接写出N点的坐标;若不存在,请说明理由5、已知是x的正比例函数,且当时,y=2(1)请求出y与x的函数表达式;(2)当x为何值时,函数值y=4;-参考答案-一、单选题1、A【解析】【分析】根据函数图象可知图象经过一、二、三象限,即可判断A选项,从图象上无法得知与轴的交点坐标,无法求得方程的解,即可判断B选项,根据图象与轴的交点,可知,进而可知,即可判断C选项,
8、根据图象经过一、二、三象限,即可知随的增大而增大,进而判断D选项【详解】A. 图像经过一、二、三象限,故该选项正确,符合题意;B. 关于方程的解不一定是,不正确,不符合题意C. 根据图象与轴的交点,可知,则,故该选项不正确,不符合题意;D. 图象经过一、二、三象限,随的增大而增大,故该选项不正确,不符合题意;故选A【点睛】本题考查了一次函数图象的性质,与坐标轴交点问题,增减性,熟练掌握一次函数图象的性质是解题的关键2、C【解析】【分析】由题意易得k0,然后根据一次函数图象与性质可进行排除选项【详解】解:正比例函数ykx(k0)函数值随x的增大而减小,k0,k0,一次函数ykxk的图象经过一、二
9、、四象限;故选:C【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键3、D【解析】【分析】根据三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义,逐项判断即可求解【详解】解:A、若一个三角形的三边长分别是a、b、c,不一定有,则原命题是假命题,故本选项不符合题意;B、(6,0)是 轴上的点,则原命题是假命题,故本选项不符合题意;C、无限不循环小数都是无理数, D、正比例函数()的图象是一条经过原点(0,0)的直线,则原命题是真命题,故本选项符合题意;故选:D【点睛】本题主要考查了三角形的三边关系,组平面直角坐标系内点的坐标特征,无理
10、数的定义,正比例函数的定义,熟练掌握三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义是解题的关键4、C【解析】【分析】根据终点距离起点1000米即可判断;根据甲、乙图像的起点可以判断;根据AB段为甲休息的时间即可判断;设乙需要t分钟追上甲,求出t即可判断【详解】解:由图像可知,从起点到终点的距离为1000米,故正确;根据图像可知甲出发40分钟之后,乙才出发,故乙比甲晚出发40分钟,故错误;在AB段时,甲的路程没有增加,即此时甲在休息,休息的时间为40-30=10分钟,故正确;乙从起点到终点的时间为10分钟,乙的速度为100010=100米/分钟,设乙需要t分钟追
11、上甲,解得t=7.5,乙追上甲时,乙跑了7.5100=750米,故正确;故选C【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像5、A【解析】【分析】根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可【详解】点P(m,n)在第三象限,m0,n0,-m0,-n0,点在第一象限故选:A【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)6、D【解析】【分析】根据确定位置的方法即可判断答案【详解】A. 北偏东25方向不能确
12、定具体位置,缺少距离,故此选项错误;B. 距学校800米处不能确定具体位置,缺少方向,故此选项错误;C. 温州大剧院音乐厅8排不能确定具体位置,应具体到8排几号,故此选项错误;D. 东经20北纬30可以确定一点的位置,故此选项正确故选:D【点睛】本题考查确定位置的方法,掌握确定位置要具体到一点是解题的关键7、A【解析】【分析】用待定系数法求出函数解析式,即可求出a和b的值,进而可求出代数式的值【详解】解:把点(0,1)和(1,3)代入yax+b,得:,解得,ba121故选:A【点睛】本题主要考查待定系数法求一次函数解析式,了解一次函数图象上点的坐标代入函数解析式是解题关键8、D【解析】【分析】
13、由点到轴的距离等于该点坐标横坐标的绝对值,可以得出结果【详解】解:由题意知到轴的距离为到轴的距离是个单位长度故选D【点睛】本题考察了点到坐标轴的距离解题的关键在于明确距离的求解方法距离为正值是易错点解题技巧:点到轴的距离=;到轴的距离=9、A【解析】【分析】根据y轴上点的横坐标为0列方程求解即可【详解】解:点A(x+2,x3)在y轴上,x+2=0,解得x=-2故选:A【点睛】本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键10、A【解析】【分析】首先判定出一次函数的增减性为y随x的增大而减小,然后即可判断出y1,y2的大小关系【详解】解:一次函数y3x1中,k30,y随x的增大而减小,
14、21,y1y2故选:A【点睛】此题考查了一次函数的增减性,比较一次函数中函数值的大小,解题的关键是根据题意判断出一次函数的增减性二、填空题1、 解析式 未知的系数【解析】【分析】根据待定系数法的概念填写即可【详解】解:先设出函数的解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法,叫待定系数法,故答案为:解析式 未知的系数【点睛】本题考查了待定系数法的概念,做题的关键是牢记概念2、【解析】【分析】根据统计表确定两个函数的的交点,然后判断即可【详解】解:根据表可得一次函数y1axb与y2mxn的交点坐标是(2,1)故可得关于x的方程axmxnb的解是,故答案为:【点睛】本题考查了
15、一次函数的性质,正确确定交点坐标是关键3、【解析】【分析】观察函数图象可得当时,直线直线:在直线:的下方,于是得到不等式的解集【详解】解:根据图象可知,不等式的解集为故答案为:【点睛】本题考查了一次函数的交点问题及不等式,解题的关键是掌握数形结合的解题方法4、二【解析】【分析】根据两直线平行一次项系数相等,求出a,即可判断yax1经过的象限【详解】解:直线yax1与直线y=2x+1平行, a=2,直线yax1的解析式为y2x1直线y2x1 ,经过一、三、四象限,不经过第二象限;故答案为:二【点睛】本题考查了一次函数图象的性质与系数之间的关系,两直线平行一次项系数相等是解题的关键5、10【解析】
16、【分析】利用待定系数法求一次函数解析式,令y=0时求出x的值即可【详解】解:y是x的一次函数,设y=kx+b(k0)将x=30,y=4;x=40,y=6分别代入y=kx+b,得,解得:,函数表达式为y=0.2x-2,当y=0时,0=0.2x-2,解得x=10,旅客最多可免费携带行李的质量是10kg,故答案为:10【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知函数值求自变量三、解答题1、(1)10;(2)函数图象的解析式:;(3)促销活动期间,去该店购买A种水果10千克,那么共需花费9元【解析】【分析】(1)根据观察函数图象的横坐标,纵坐标,可得结果;(2)根据待定
17、系数法,设函数图象的解析式 (k是常数,b是常数,),将,两个点代入求解即可得函数的解析式;(3)将代入(2)函数解析式即可【详解】解:(1)观察函数图象的横坐标,纵坐标,不超过5千克时,单价是10元,数量不少于11千克时,单价为8.8元故答案为:10;(2)设函数图象的解析式 (k是常数,b是常数,),图象过点,可得:,解得,函数图象的解析式:;(3)当时,答:促销活动期间,去该店购买A种水果10千克,那么共需花费9元【点睛】本题考查了一次函数的应用,待定系数法确定函数解析式等,理解题意,根据函数图象得出信息是解题关键2、(1)40;480;(2)y=100x-120【解析】【分析】(1)根
18、据图象可知甲车行驶2行驶所走路程为80千米,据此即可求出甲车的速度;进而求出甲车行驶6小时所走的路程为240千米,根据两车同时到达各自的目的地可得a=2402=480;(2)运用待定系数法解得即可;【详解】解:(1)由题意可知,甲车的速度为:802=40(千米/时);a=4062=480,故答案为:40;480;(2)设y与x之间的函数关系式为y=kx+b,由图可知,函数图象经过(2,80),(6,480),2k+b=806k+b=480,解得k=100b=-120,y与x之间的函数关系式为y=100x-120;【点睛】本题考查了从函数图象获取信息,以及待定系数法求一次函数解析式,解答本题的关
19、键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答3、(1)y=20-6x;(2)16.4;(3)9千米【解析】【分析】(1)结合题意列关系式,即可得到答案;(2)结合(1)的结论,根据一次函数的性质计算,即可得到答案;(3)结合(1)的结论,通过求解一元一次方程,即可得到答案【详解】(1)根据题意,得:y=20-6x;(2)结合(1)的结论,得山顶的温度大约是:20-0.66=20-3.6=16.4;(3)结合(1)的结论,得:20-6x=-34x=9飞机离地面的高度为9千米【点睛】本题考查了一次函数的知识;解题的关键是熟练掌握一次函数的性质,从而完成求解4、(1);(2)点的坐标
20、;(3)点的坐标为或,或【解析】【分析】(1)当时,即点的坐标为,将点的坐标代入直线得:,解得:,即可求解;(2)确定点的对称点、点的对称点,连接,此时,的值最小,即可求解;(3)当点在直线上方,画出图形,证明,利用,即可求解当点在直线下方时,同的方法即可得出结论如图2中,当点在轴的右侧,是等腰直角三角形时,同法可得结论【详解】解:(1)当时,即点的坐标为,将点的坐标代入直线得:,解得:,故:直线的解析式为:;(2)确定点关于过点垂线的对称点、点关于轴的对称点,连接交过点的垂线与点,交轴于点,此时,的值最小,如图所示:将点、点的坐标代入一次函数表达式:得:,解得:,则直线的表达式为:,当时,即
21、点的坐标为,的值,即:当的值最小为时,此时点的坐标;(3)将、点坐标代入一次函数表达式,同理可得其表达式为当点在直线上方时,设点,点,点,过点、分别作轴的平行线交过点与轴的平行线分别交于点、,即,解得故点的坐标为,当点在下方时,如图1,过点作轴,与过点作轴的平行线交于,与过点作轴的平行线交于,同的方法得,如图2中,当点在轴的右侧,是等腰直角三角形时,同法可得即:点的坐标为,或,【点睛】本题考查的是一次函数的综合运用,涉及到三角形全等、轴对称的性质等知识点,其中(2)中,通过画图确定点、的位置是本题的难点5、(1)y=+1;(2)x=时,y=4【解析】【分析】(1)根据正比例函数的定义,形如列出函数表达式,代入数值求得,进而求得表达式;(2)根据的值代入(1),即可求得的值【详解】解:(1)是x的正比例函数,当时,y=2解得表达式为:即(2)由,令即解得 x=时,y=4【点睛】本题考查了正比例函数的定义,求一次函数解析式,已知函数值求自变量的值,掌握正比函数的定义是解题的关键