《2021-2022学年最新京改版八年级数学下册第十四章一次函数专项测试试卷(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年最新京改版八年级数学下册第十四章一次函数专项测试试卷(无超纲).docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十四章一次函数专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知点A(x,5)在第二象限,则点B(x,5)在( )A第一象限B第二象限C第三象限D第四象限2、已知点(1,y
2、1)、(2,y2)在函数y2x+1图象上,则y1与y2的大小关系是( )Ay1y2By1y2Cy1=y2D无法确定3、在平面直角坐标系xOy中, 下列函数的图像过点(-1,1)的是( )ABCD4、如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,2),按这样的运动规律,动点P第2021次运动到点( )A(2020,2)B(2020,1)C(2021,1)D(2021,2)5、甲、乙两名运动员在笔直的公路上进行自行车训练,行驶路程S(千米)与行驶时间t(小时)之间的关系如图所示,下列四种说法:甲的
3、速度为40千米/时;乙的速度始终为50千米/时;行驶1小时时,乙在甲前10千米处;甲、乙两名运动员相距5千米时,t =05或t =2或t =4,其中正确的是( )ABCD6、下列各图中,不能表示y是x的函数的是( )ABCD7、已知4个正比例函数yk1x,yk2x,yk3x,yk4x的图象如图,则下列结论成立的是()Ak1k2k3k4Bk1k2k4k3Ck2k1k3k4Dk4k3k2k18、甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行,图中l1,l2分别表示甲、乙两辆摩托车到A地的距离S(km)与行驶时间t(h)的函数关系则下列说法错误的是()A乙摩托车的速度较快B经过0.3小
4、时甲摩托车行驶到A,B两地的中点C当乙摩托车到达A地时,甲摩托车距离A地kmD经过0.25小时两摩托车相遇9、甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,到达目的地后停止. 甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示,给出下列结论:A,B之间的距离为1200m;乙行走的速度是甲的1.5倍;b800;a34,其中正确的结论个数为()A4个B3个C2个D1个10、已知为第四象限内的点,则一次函数的图象大致是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知
5、点M坐标为,点M到x轴距离为_2、函数的定义域是_3、如图,直线l:yx,点A1坐标为(3,0)经过A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3,按此做法进行下去,点A2021的坐标为_4、若点在y轴上,则m=_5、一次函数ykxb(k0)中两个变量x、y的部分对应值如下表所示:x21012y85214那么关于x的不等式kxb1的解集是_三、解答题(5小题,每小题10分,共计50分)1、某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状
6、况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度h(米)与操控无人机的时间t(分钟)之间的关系如图中的实线所示,根据图象回答下列问题:(1)在上升或下降过程中,无人机的速度为多少?(2)图中a表示的数是 ;b表示的数是 ;(3)无人机在空中停留的时间共有 分钟2、如图,已知O为坐标原点,B(0 ,3),OB=CD,且OD=2OC,将BOC沿BC翻折至BEC,使得点E、O重合,点M是y轴正半轴上的一点且位于点B上方,以点B为端点作一条射线BA,使MBA=BCO,点F是射线BA上的一点(1)请直接写出C、D两点的坐标:点C ,点D ;(2)当BF=BC时,连接FE求点F的坐标;
7、求此时BEF的面积3、一次函数的图像过,两点(1)求函数的关系式;(2)画出该函数的图像;(3)由图像观察:当x 时,y0;当x 时,y0;当时,y的取值范围是 4、科学家研究发现,声音在空气中传播的速度y(米/秒)与气温x()有关当气温是0时,音速是331米/秒;当气温是5时,音速是334米/秒;当气温是10时,音速是337米/秒;当气温是15时,音速是340米/秒;当气温是20时,音速是343米/秒;当气温是25时,音速是346米/秒;当气温是30时,音速是349米/秒(1)请你用表格表示气温与音速之间的关系(2)表格反映了哪两个变量之间的关系?哪个是自变量?(3)当气温是35时,估计音速
8、y可能是多少?(4)能否用一个式子来表示两个变量之间的关系?5、如图,在平面直角坐标系中,O为坐标原点,直线yx+8与x轴交于点A,与y轴交于点B(1)A点坐标为 ,B点坐标为 ;(2)若动点D从点B出发以4个单位/秒的速度沿射线BO方向运动,过点D作OB的垂线,动点E从点O出发以2个单位/秒的速度沿射线OA方向运动,过点E作OA的垂线,两条垂线相交于点P,若D、E两点同时出发,此时,我们发现点P在一条直线上运动,请求这条直线的函数解析式(3)在(2)的基础上若点P也在直线y3x上,点Q在坐标轴上,当ABP的面积等于BAQ面积时,请直接写出点Q的坐标-参考答案-一、单选题1、D【解析】【分析】
9、由题意直接根据各象限内点坐标特征进行分析即可得出答案【详解】点A(x,5)在第二象限,x0,x0,点B(x,5)在四象限故选:D【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)2、A【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据12即可得出结论【详解】解:一次函数y2x1中,k20,y随着x的增大而减小点(1,y1)、(2,y2)是一次函数y2x1图象上的两个点,12,y1y2故选:A【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一
10、次函数图象的增减性是解答此题的关键3、D【解析】【分析】利用x=-1时,求函数值进行一一检验是否为1即可【详解】解: 当x=-1时,图象不过点,选项A不合题意;当x=-1时,图象不过点,选项B不合题意;当x=-1时,图象不过点,选项C不合题意;当x=-1时,图象过点,选项D合题意;故选择:D【点睛】本题考查求函数值,识别函数经过点,掌握求函数值的方法,点在函数图像上点的坐标满足函数解析式是解题关键4、B【解析】【分析】观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,然后根据商和余数的情况确定运动后点的坐标即可【详解】解:点的运动规律是每运动四次向右
11、平移四个单位,动点第2021次运动时向右个单位,点此时坐标为,故选:B【点睛】本题主要考查平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号5、D【解析】【分析】分析图像上每一段表示的实际意义,再根据行程问题计算即可【详解】甲的速度为,故正确;时,已的速度为,后,乙的速度为,故错误;行驶1小时时,甲走了40千米,乙走了50千米,乙在甲前10千米处,故正确;由得:甲的函数表达式为:,已的函数表达为:时,时,时,甲、乙两名运动员相距,时,甲、乙两名运动员相距,时,甲、乙两名运动员相距为,故正确故选:D【点睛】本题为一次函数应用题,此类问题主要通过图象计算速度,
12、即分析每一段表示的实际意义进而求解6、D【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,即可求解【详解】解:A、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;B、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;C、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;D、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故本选项不符合题意;故选:D【点睛】本题主要考查了函数的定义,熟练掌握在一个变化过程中,有两个变量x,y,对于x的每
13、一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量是解题的关键7、A【解析】【分析】首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小【详解】解:首先根据直线经过的象限,知:k30,k40,k10,k20,再根据直线越陡,|k|越大,知:|k1|k2|,|k4|k3|则k1k2k3k4,故选:A【点睛】本题主要考查了正比例函数图象的性质,首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小8、D【解析】【分析】由题意根据函数图象中的数据和题意可以判断各个选项中的结论是否正确,
14、从而可以解答本题【详解】解:由图可得,甲、乙行驶的路程相等,乙用的时间短,故乙的速度快,故选项A正确;甲的速度为:200.6(km/h),则甲行驶0.3h时的路程为:0.310(km),即经过0.3小时甲摩托车行驶到A,B两地的中点,故选项B正确;当乙摩托车到达A地时,甲摩托车距离A地:0.5(km),故选项C正确;乙的速度为:200.540(km/h),则甲、乙相遇时所用的时间是(小时),故选项D错误;故选:D【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想进行分析解答9、A【解析】【分析】由图象所给信息对结论判断即可【详解】由图象可知当x=0时,甲、乙两人在A、
15、B两地还未出发故A,B之间的距离为1200m故正确前12min为甲、乙的速度和行走了1200m故由图象可知乙用了24-4=20min走完了1200m则则故正确又两人相遇时停留了4min两人相遇后从16min开始继续行走,由图象x=24时的拐点可知,到24min乙到达目的地则两人相遇后行走了24-16=8min,两人之间的距离为8100=800米则b=800故正确从24min开始为甲独自行走1200-800=400m则t=min故a=24+10=34故正确综上所述均正确,共有四个结论正确故选:A【点睛】本题考查了从函数图象获取信息,运用数形结合的思想是解题的关键10、A【解析】【分析】根据为第四
16、象限内的点,可得 ,从而得到 ,进而得到一次函数的图象经过第一、二、三象限,即可求解【详解】解:为第四象限内的点, , ,一次函数的图象经过第一、二、三象限故选:A【点睛】本题主要考查了坐标与图形,一次函数的图象,熟练掌握一次函数,当时,一次函数图象经过第一、二、三象限;当时,一次函数图象经过第一、三、四象限;当时,一次函数图象经过第一、二、四象限;当时,一次函数图象经过第二、三、四象限是解题的关键二、填空题1、7【解析】【分析】根据点(x,y)到x轴的距离等于y求解即可【详解】解:点M 到x轴距离为7=7,故答案为:7【点睛】本题考查点到坐标轴的距离,熟知点到坐标轴的距离与点的坐标的关系是解
17、答的关键2、【解析】【分析】函数关系中主要有二次根式根据二次根式的意义,被开方数是非负数【详解】解:根据题意得:3x+60,解得x2故答案为:x2【点睛】本题主要考查自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数3、(,0)【解析】【分析】先根据一次函数解析式求出B1点的坐标,再根据B1点的坐标求出OA2的长,用同样的方法得出OA3,OA4的长,以此类推,总结规律便可求出点A2021的坐标【详解】解:点A1坐标为(3,0),OA13,在yx
18、中,当x3时,y4,即B1点的坐标为(3,4),由勾股定理可得OB15,即OA253,同理可得,OB2,即OA35()1,OB3,即OA45()2,以此类推,OAn5()n2,即点An坐标为(,0),当n2021时,点A2021坐标为(,0),故答案为:(,0)【点睛】本题考查一次函数图象上点的坐标特征、勾股定理等知识,是重要考点,难度一般,解题注意,直线上任意一点的坐标都满足函数关系式yx4、-4【解析】【分析】在轴上点的坐标,横坐标为,可知,进而得到的值【详解】解:在轴上故答案为:【点睛】本题考察了坐标轴上点坐标的特征解题的关键在于理解轴上点坐标的形式在轴上点的坐标,横坐标为;在轴上点的坐
19、标,纵坐标为5、x1【解析】【分析】由表格得到函数的增减性后,再得出时,对应的的值即可【详解】解:当时,根据表可以知道函数值y随的增大而减小,不等式的解集是故答案为:【点睛】此题考查了一次函数与一元一次不等式,认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系,理解一次函数的增减性是解决本题的关键三、解答题1、(1)无人机的速度为25米/分;(2)2;15;(3)9【解析】【分析】(1)根据无人机在第6-7分钟,1分钟内从50米的高度上升到了75米的高度,进行求解即可;(2)根据(1)中求得的结果,由路程=速度时间进行求解即可;(3)根据函数图像可知无人机空中停留的分为第a-6分钟和
20、第7-12分钟,由此求解即可【详解】解:(1)无人机在第6-7分钟,1分钟内从50米的高度上升到了75米的高度,无人机的速度为75-50=25米/分;(2)由题意得:,故答案为:2,15;(3)由题意得:无人机停留的时间=6-2+12-7=9分钟,故答案为:9【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够正确读懂函数图像2、(1)(-1 ,0),(2 ,0);(2)F(-3 ,4);【解析】【分析】(1)由B(0 ,3)知OB=3,由OB=CD,且OD=2OC,知OC=1,OD=2,据此求解即可;(2)过点F作FP轴于点P,利用AAS证明FPBBOC即可求解;过点F作FQBE于点
21、Q,证明FB是PBE的角平分线,利用角平分线的性质求解即可【详解】解:(1)B(0 ,3),OB=3,OB=CD,且OD=2OC,OC=1,OD=2,C(-1 ,0),D(2 ,0);故答案为:(-1 ,0),(2 ,0);(2)过点F作FP轴于点P,PBF=BCO,BF=BC,又FPB=BOC=90,FPBBOC(AAS),FP=BO=3,PB= OC=1,PO=4,F(-3 ,4);过点F作FQBE于点Q,CBO+BCO=90,PBF=BCO,CBO+PBF=90,则CBF=90,由折叠的性质得:EBC=OBC,EB=BO=3,EBC +EBF=90,EBF=PBF,即FB是PBE的角平分
22、线,又FQBE,FP轴,FQ= FP=3,BEF的面积为BEFQ=【点睛】本题考查了坐标与图形,全等三角形的判定和性质,角平分线的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件3、(1);(2)见解析;(3)x2;-2y4【解析】【分析】(1)运用待定系数法求出函数关系式即可;(2)根据“两点确定一条直线”画出直线即可;(3)根据函数图象解答即可【详解】解:(1)设经过A,B两点的直线解析式为y=kx+b,把,两点坐标代入,得k+b=23k+b=-2 解得,k=-2b=4 直线的解析式为;(2)当x=0时,y=4,当y=0时,x=2,直线经过(0,4),(2,0),画图象如图所示
23、,(3)根据图象可得:当x0;当x2时,y0;当时,-2y4 故答案为:x2;-2y4【点睛】本题主要考查了运用待定系数法求一次函数解析式,画一次函数图象以及一次函数图象与性质,熟练掌握一次函数的图象与性质是解答本题的关键4、 (1)见解析;(2)两个变量是:传播的速度和温度,温度是自变量;(3) 352米/秒; (4) y=331+35x【解析】【分析】(1)根据题中数据列出表格(2)找出题中的两个变量(3)根据传播速度与温度的变化规律进而得出答案(4)结合(3)中发现得出两个变量之间的关系【详解】(1)列表如下:x()051015202530y(米/秒)331334337340343346
24、349(2)两个变量是:传播的速度和温度,温度是自变量(3) 根据表格中音速y(米/秒)随着气温x()的变化规律可知,当气温再增加5,音速就相应增加3米/秒,即为349+3=352(米/秒),当气温是35时,估计音速y可能是:352米/秒(4)根据表格中数据可得出:温度每升高5,传播的速度增加3,当x=0时,y=331,故两个变量之间的关系为: y=331+35x【点睛】本题考查了变量与常量以及函数表示方法,理解两个变量的变化规律是得出函数关系式的关键5、(1)(6,0)、(0,8);(2)y82x;(3)点Q的坐标为:(0,)或(,0)或(,0)或(0,)【解析】【分析】(1)令x0,则y8
25、,令y0,则x6,即可求解;(2)由题意得: ,从而得到 ,进而得到点P(2t,84t),则有x2t,y84t,即可求解;(3)分两种情况:当点Q在AB下方时,当点Q在AB上方时,即可求解【详解】解:(1)yx+8,令x0,则y8,令y0,则x6,A点坐标为(6,0),B点坐标为(0,8);(2)由题意得:,点P(2t,84t),则x2t,y84t,故点P所在的直线表达式为:y82x;(3)当点Q在AB下方时,将y3x与y82x联立并解得:x,y,即点P(,),当ABP的面积等于BAQ面积时,点Q在过点P且平行于AB的直线上,设过点P且平行于AB的直线表达式为:yx+b,将点P的坐标代入上式得:+b,解得:b,故函数的表达式为:yx+,当x0时,y,当y0时,x,即点Q(0,)或(,0)当点Q在AB上方时,同理可得:点Q的坐标为:(,0)或(0,);综上点Q的坐标为:(0,)或(,0)或(,0)或(0,)【点睛】本题主要考查了一次函数的图象和性质,一次函数与动点问题,熟练掌握一次函数的图象和性质是解题的关键