《2022年最新强化训练京改版九年级数学下册第二十五章-概率的求法与应用专题练习试题.docx》由会员分享,可在线阅读,更多相关《2022年最新强化训练京改版九年级数学下册第二十五章-概率的求法与应用专题练习试题.docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第二十五章 概率的求法与应用专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某市教委高度重视自然灾害中的安全教育,要求各级各类学校从认识安全警告标志入手开展安全教育活动某数学兴趣小组
2、准备了4张印有安全图标的卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片的正面图案中有一张是轴对称图形的概率是( )ABCD2、在“石头、剪子、布”的游戏中,当你出“剪刀”时,对手与你打平的概率为()ABCD3、在抛掷一枚质地均匀的硬币的实验中,第100次抛掷时,反面朝上的概率是( )ABCD不确定4、如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是( ) ABCD5、一个不透明的袋子里装有黄球18个和红球若干,小明通过多次摸球试验后发现摸到红球的频率稳定在0.4左右,则袋子里有红
3、球( )个A12B15C18D546、某小组做“当试验次数很大时,用频率估计概率”的试验时,统计了某一结果出现的频率表格如下,则符合这一结果的试验最有可能的是( ) 次数1002003004005006007008009001000频率0.600.300.500.360.420.380.410.390.400.40A掷一枚质地均匀的骰子,向上面的点数是“5”B掷一枚一元的硬币,正面朝上C不透明的袋子里有2个红球和3个黄球,除颜色外都相同,从中任取一球是红球D三张扑克牌,分别是3、5、5,背面朝上洗匀后,随机抽出一张是57、一只不透明袋子中装有1个绿球和若干个黑球,这些球除颜色外都相同,某课外学
4、习小组做摸球试验,将口袋中的球拌匀,从中随机摸出个球,记下颜色后再放回口袋中不断重复这一过程,获得数据如下:摸球的次数200300400100016002000摸到黑球的频数14218626066810641333摸到黑球的频率0.71000.62000.65000.66800.66500.6665该学习小组发现,摸到黑球的频率在一个常数附近摆动,由此估计这个口袋中黑球有()个A4B3C2D18、小明语数英的科目成绩的排序为语文数学英语到家后,小明妈妈从小明书包依次抽2张试卷,若第二次抽到的试卷比第一次抽到的试卷成绩高的话,则小明可以获得奖励请问小明获得奖励的概率为( )ABCD9、在一个不透
5、明的布袋中装有45个白球和若干个黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.4左右,则布袋中黑球的个数可能有( )A18B27C36D3010、如图所示,平整的地面上有一个不规则图案(图中阴影部分),为了了解该图案的面积是多少,我们采取了以下办法:用一个长为a,宽为b的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),现将若干次有效实验的结果绘制成了如图所示的折线统计图,由此估计不规则图案的面积大约是( )Aa2BabCb2Dab第卷(非
6、选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、有三辆车按1,2,3编号,苗苗和珊珊两人可任意选坐一辆车,则两人同坐一辆车的概率为_2、某次体能测试,要求每名考生从跳绳、长跑、游泳三个项目中随机抽取一项参加测试,小东和小华都抽到游泳项目的概率是_3、综艺节目朗读者自开播以来受到大家的广泛关注重庆实验外国语学校某班主任准备从经常关注该节目的同学中抽取两人进行交流讨论,其中经常关注的同学中有3名男同学,1名女同学,则恰好抽取到1名男同学和1名女同学的概率是_4、某校决定从两名男生和一名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰好是一男一女的概率是 _5、小明是个
7、小马虎,晚上睡觉时将两双不同的袜子放在床头,早上起床没看清随便穿了两只就去上学,则小明正好穿的是相同的一双袜子的概率是_三、解答题(5小题,每小题10分,共计50分)1、在一个不透明的袋中装有5个只有颜色不同的球,其中3个黄球,2个黑球(1)用画树状图或列表的方法求从袋中同时摸出的两个球都是黄球的概率;(2)再往袋中放入若干个黑球,搅匀后,若从袋中摸出一个球是黑球的概率是,求放入袋中的黑球的个数2、 “每天锻炼一小时,健康生活一辈子”,为了选拔“阳光大课间”领操员,学校组织初中三个年级推选出来的15名领操员进行比赛,成绩如表:成绩/分78910人数/人2544(1)从这15名领操员中随机抽取1
8、人,得分在9分以上(包括9分)的概率是 ;(2)已知获得10分的4位选手中,七、八、九年级各有1人、2人、1人,学校准备从中抽取两人领操,请用画树状图或列表格的方法,求抽到八年级两名领操员的概率3、某生物制剂公司以箱养的方式培育一批新品种菌苗,每箱有40株菌苗若某箱菌苗失活率大于10%,则需对该箱菌苗喷洒营养剂某日工作人员随机抽检20箱菌苗,结果如表:箱数625424每箱中失活菌苗株数012356(1)抽检的20箱平均每箱有多少株失活菌苗?(2)该日在这批新品种菌苗中随机抽取一箱,记事件A为:该箱需要喷洒营养剂请估计事件A的概率4、九年级十班的甲、乙两位同学练习百米赛跑;操场上从内道到外道,标
9、有1,2,3,4四个跑道他们抽签占跑道(1)若甲抽到2道,则乙抽到3道的概率是_;(2)请列表或画树状图求甲、乙在相邻跑道的概率5、从一副52张(没有大小王)的扑克牌中,每次抽出1张,然后放回洗匀再抽,在试验中得到下列表中部分数据:试验次数4080120160200240280320360400出现方块的次数1118a404963688091100出现方块的频率0.2750.2250.2500.2500.2450.2630.243b0.2530.250(1)将数据表a、b补充完整;(2)从上表中可以估计出现方块的概率是_;(3)从这副扑克牌中取出两组牌,分别是方块1,2,3和红桃1,2,3,将
10、它们背面朝上分别重新洗匀后,从两组牌中各摸出一张,若摸出的两张牌的牌面数字之和等于3,则甲方赢;若摸出的两张牌的牌面数字之和等于4,则乙方赢你认为这个游戏对双方是公平的吗若不是,有利于谁请你用概率知识(列表或画树状图)加以分析说明-参考答案-一、单选题1、A【分析】利用列表法列举所有的可能性,再由当心低温的图片为轴对称图形得到两张卡片的正面图案中有一张是轴对称图形的有6种,根据公式计算即可求出概率【详解】解:由题意知,当心低温的图片为轴对称图形,列表为:当心水灾1当心山体滑坡2当心低温3当心雷击4当心水灾11,21,31,4当心山体滑坡22,12,32,4当心低温33,13,23,4当心雷击4
11、4,14,24,3共有12种等可能的情况,其中两张卡片的正面图案中有一张是轴对称图形的有6种,两张卡片的正面图案中有一张是轴对称图形的概率是=,故选:A【点睛】此题考查了列举法求事件的概率,正确判断轴对称图形,正确列举出所有不同情况是解题的关键2、B【分析】根据题意画树状图展示所有3种等可能的结果数,再找出对手与你打平的结果数,然后根据概率公式求解即可【详解】解:画树状图为:共有3种可能的结果数,其中对手与你打平的结果数为1,所以对手与你打平的概率=.故选:B【点睛】本题考查列表法与树状图法求概率,注意掌握利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利
12、用概率公式计算事件A或事件B的概率3、B【分析】抛一枚质地均匀的硬币,有两种结果,正面或反面朝上,每种结果等可能出现,利用概率公式,即可求得答案【详解】解:抛掷一枚质地均匀的硬币,有两种结果:正面朝上,反面朝上,每种结果等可能出现,第100次再抛这枚硬币时,反面向上的概率是:故选:B【点睛】本题主要考查简单事件概率,掌握等可能事件的概率公式,是解题的关键.4、B【分析】确定阴影部分的面积在整个转盘中占的比例,根据这个比例即可求出转盘停止转动时指针指向阴影部分的概率【详解】解:如图:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分的概率是26故选:B【点睛】本题考查了几何
13、概率用到的知识点为:概率=相应的面积与总面积之比5、A【分析】根据“大量重复试验中事件发生的频率逐渐稳定到的常数可以估计概率”直接写出答案即可【详解】解:设有红色球x个,根据题意得:,解得:x=12,经检验,x=12是分式方程的解且符合题意故选:【点睛】本题考查了利用频率估计概率的知识,解题的关键是能够根据摸到红球的频率求得红球的个数6、C【分析】根据利用频率估计概率得到实验的概率在左右,再分别计算出四个选项中的概率,然后进行对比判断即可【详解】解:、掷一个质地均匀的骰子,向上的面点数是“5”的概率为:,不符合题意;B、抛一枚硬币,出现正面朝上的概率为,不符合题意;C、不透明的袋子里有2个红球
14、和3个黄球,除颜色外都相同,从中任取一球是红球的概率是,符合题意;D、三张扑克牌,分别是、,背面朝上洗均后,随机抽出一张是5的概率为,不符合题意故选:C【点睛】本题考查了利用频率估计概率:大数次重复实验时,事件发生的频率在某个固定位置左右波动,并且波动的幅度越来越小,根据这个稳定的频率的值,可以用估计概率,这个固定的近似值就是这个事件的概率,当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率7、C【分析】该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,据此知摸出黑球的概率为0.667,继而得摸出绿球的概率为0.
15、333,求出袋子中球的总个数即可得出答案【详解】解:该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,估计摸出黑球的概率为0.667,则摸出绿球的概率为,袋子中球的总个数为,由此估出黑球个数为,故选:C【点睛】本题考查了利用频率估计概率,解题的关键是掌握大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率8、B【分析】画出树状图求解即可【详解】解:分别用A,B,C表示语文,数学,英语的成绩,由题意得,由树状图可知,一共有6种可能的结果,符合题意的结果有3种
16、,所以获得奖励的概率为,故选B【点睛】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即9、D【分析】设黑球的个数为x个,根据频率可列出方程,解方程即可求得x,从而得到答案【详解】设黑球的个数为x个,由题意得:解得:x=30经检验x=30是原方程的解则袋中黑球的个数为30个故选:D【点睛】本题考查了用频率估计概率,解方程,根据概率列出方程是关键10、B【分析】本题分两部分求解,首先假设不规则图案面积为x,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线图用频率估计概率,综合以上列方程求解【详解】解:假设
17、不规则图案面积为x m2,用一个长为a,宽为b的长方形长方形面积为abm2,根据几何概率公式小球落在不规则图案的概率为:,当事件A试验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,综上有:0.35,解得xab故选:B【点睛】本题考查几何概率以及用频率估计概率,并在此基础上进行了题目创新,解题关键在于清晰理解题意,能从复杂的题目背景当中找到考点化繁为简,创新题目对基础知识要求极高二、填空题1、【分析】画出树状图计算即可;【详解】根据题意画树状图得:,共有9种等可能的结果,期中两人同坐一辆车的结果数为3,两人同坐一辆车的概率
18、为;故答案是:【点睛】本题主要考查了画树状图求概率,准确计算是解题的关键2、【分析】根据列表法求概率即可【详解】解:设跳绳、长跑、游泳三个项目分别为A,B,C,列表如下,ABCAAAABACBBABBBCCCACBCC共有9种等可能结果,小东和小华都抽到游泳项目只有1种结果,则小东和小华都抽到游泳项目的概率为故答案为:【点睛】本题考查了列表法求概率,掌握列表法求概率是解题的关键列表法或画树状图法可以不重复不遗漏的列出所有可能的结果数,概率=所求情况数与总情况数之比3、【分析】根据题意,使用列表法将所有可能性表示出来,然后找出满足条件的可能性计算概率即可【详解】解:根据题意,使用列表法如下:男男
19、男女男(男,男)(男,男)(男,女)男(男,男)(男,男)(男,女)男(男,男)(男,男)(男,女)女(女,男)(女,男)(女,男)由表可得:共有12中可能,满足恰好抽取到1名男同学和1名女同学的共有6种可能性,故答案为:【点睛】题目主要考查利用树状图或者列表法表示出所有可能性,然后计算概率,熟练运用树状图或列表法是解题关键4、【分析】列举出所有等可能的情况数,让选出的恰为一男一女的情况数除以总情况数即为所求的概率【详解】解:根据题意画图如下:共有6种等可能的情况数,其中一男一女的情况有4种,则选出的恰为一男一女的概率是46=故答案是:【点睛】此题考查了列表法与树状图法求概率,解答此题的关键是
20、用树形法列举出所有可能的情况,再根据概率公式解答5、【分析】两双不同的袜子共有6种可能的组合,而穿的是同一双袜子的可能情况有2种,从而可求得概率【详解】第一双袜子的两只分别记为,第二袜子的两只分别记为,列出树状图如下:两双不同的袜子共有12种可能的组合,是同一双袜子的可能情况有4种则小明正好穿的是相同的一双袜子的概率是故答案为:【点睛】本题考查了简单事件的概率,关键是根据题意求出事件的所有可能的结果及某事件发生的可能结果,则由概率计算公式即可求得概率三、解答题1、(1);(2)4【分析】(1)根据题意画出树状图求出所有等可能的结果数和同时摸出的两个球都是黄球的结果数,然后根据概率公式求解即可;
21、(2)设放入袋中的黑球的个数为x,根据从袋中摸出一个球是黑球的概率是,列方程求解即可【详解】解:(1)画树状图为:共有20种等可能的结果数,其中从袋中同时摸出的两个球都是黄球的结果数为6,所以从袋中同时摸出的两个球都是黄球的概率;(2)设放入袋中的黑球的个数为x,根据题意得解得x4,所以放入袋中的黑球的个数为4【点睛】本题考查的是用列表法或画树状图法求概率解题的关键是熟练掌握列表法或画树状图法列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比2、(1);(2)【分析】(1)由于总
22、人数为15人,9分以上的人为8人,由此可知得分在9分以上(包括9分)的概率是;(2)可以利用树状图进行解题即可【详解】解:(1)共有15名领操员,得分在9分(包括9分)以上的领操员有8名,得分在9分(包括9分)以上的概率是;(2)画树状图如下:由树状图可知,共有12种等可能的结果,其中恰好抽到八年级两名领操员的有2中结果,则恰好抽到八年级两名领操员的概率为=【点睛】本题主要考查概率的计算,准确找出事件的相关数量,并会利用树状图或表格进行分析是解题的关键3、(1)抽检的20箱平均每箱有2.9株失活菌苗;(2)事件A的概率为【分析】(1)根据题意及表格可直接进行求解;(2)由题意知当每箱中失活菌苗
23、株数为4010=4株的时候需喷洒营养剂,然后根据表格及概率公式可直接进行求解【详解】解:(1)由表格得:(株);答:抽检的20箱平均每箱有2.9株失活菌苗;(2)由题意得:4010=4株,当每箱中失活菌苗株数为4株时,则需喷洒营养剂,即事件A的概率为【点睛】本题主要考查概率,熟练掌握概率的求解是解题的关键4、(1);(2)【分析】(1)因为甲已经抽到了2道,故乙只能在1、3、4三条跑道中抽取,乙抽到3道的概率P=(2)如图所示列表格,因为甲乙不能在同一条跑道,故共有12种可能,其中(1,2)、(2,3)、(3、4)、(2,1)、(3,2)、(4,3)为甲、乙跑道相邻的情况,故甲、乙在相邻跑道的
24、概率为【详解】(1)甲已经抽到2号跑道乙只能在1、3、4三条跑道中抽取乙抽到3道的概率P=(2)如图所示列表格可知(1,2)、(2,3)、(3、4)、(2,1)、(3,2)、(4,3)时甲、乙在相邻跑道故甲、乙在相邻跑道的概率为【点睛】本题考查了事件概率的计算以及列表法求概率,当事件中涉及两个因素,并且可能出现的结果数目较多时,用表格不重不漏地列出所有可能的结果,这种方法叫列表法列表法的一般步骤:(1)把所有可能发生的试验结果一一列举出来,要求:不重不漏;所有可能结果有规律地填入表格(2)把所求事件发生的可能结果都找出来(3)代入计算公式:5、(1)30,0.250;(2);(3)这个游戏对双
25、方是不公平的,有利于乙方,说明见解析【详解】(1)根据频数总数频率,频率频数总数计算,补全即可;(2)概率是题目中比较稳定在的那个数,观察(1)中表格可得到答案;(3)游戏是否公平,关键要看是否游戏双方赢的概率相同,本题中即甲方赢或乙方赢的概率是否相等,求出概率比较,即可得出结论【分析】解:(1)由题意得:,填表如下所示:试验次数4080120160200240280320360400出现方块的次数1118a404963688091100出现方块的频率0.2750.2250.2500.2500.2450.2630.243b0.2530.250(2)从表中得出,出现方块的频率稳定在0.250附近,故可以估计出现方块的概率为;(3)列表如下:红桃123方块123423453456由表可知所有等可能的结果有9种,其中甲方赢的结果有2种,乙方赢的结果有3种,甲方赢,乙方赢,乙方赢甲方赢,这个游戏对双方是不公平的,有利于乙方【点睛】本题主要考查了求频率,根据频率估计概率,游戏公平性,解题的关键在于能够熟练掌握相关知识进行求解