《2021-2022学年京改版八年级数学下册第十六章一元二次方程专项攻克试题(含解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年京改版八年级数学下册第十六章一元二次方程专项攻克试题(含解析).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十六章一元二次方程专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若m是方程x2x10的根,则2m22m2020的值为( )A2022B2021C2020D20192、参加一
2、次活动的每个人都和其他人各握了一次手,所有人共握手10次,有多少人参加活动?设有x人参加活动,可列方程为( )ABCD3、将一元二次方程通过配方转化为的形式,下列结果中正确的是( )ABCD4、方程x24x的解是()Ax4Bx2Cx4或x0Dx05、下列一元二次方程两实数根和为-4的是( )ABCD6、一元二次方程2x2 - 1 = 6x化成一般形式后,常数项是 - 1,一次项系数是( )A- 2B- 6C2D67、中秋佳节前某月饼店7月份的销售额是2万元,9月份的销售额是4.5万元,从7月份到9月份,该店销售额平均每月的增长率是()A20%B25%C50%D62.5%8、已知一元二次方程ax
3、2+bx+c=3有一个根为x=2,且a+b+c=3,则一元二次方程ax2bx+c=3的两根分别为( )Ax1=0,x2=3Bx1=1,x2=4Cx1=0,x2=3,Dx1=2,x2=19、某种芯片实现国产化后,经过两次降价,每块芯片单价由128元降为88元.若两次降价的百分率相同,设每次降价的百分率为x,根据题意,可列方程A128(1 - x2)= 88B88(1 + x)2 = 128C128(1 - 2x)= 88D128(1 - x)2 = 8810、南宋著名数学家杨辉所著的杨辉算法中记载:“直田积八百六十四步,只云长阔共六十步,问长阔各几何?”意思是“一块矩形田地的面积是864平方步,
4、只知道它的长与宽的和是60步,问它的长和宽各是多少步?”设矩形田地的长为步,根据题意可以列方程为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为660平方米,则小道的宽为多少米?若设小道的宽为x米,则根据题意,列方程为_2、某旅游景点6月份共接待游客64万人次,暑期放假学生旅游人数猛增,且每月的增长率相同,8月份共接待游客81万人次,如果每月的增长率都为x,则根据题意可列方程 _3、骑行带头盔,安全有保障“一盔一带”政策的推行致头盔
5、销量大幅增长,从2019年到2021年我国头盔销售额从23.4亿元增长到39.546亿元,则我国头盔从2019年到2021年平均每年增长率是 _4、已知关于的一元二次方程有一个根为1,一个根为,则_,_5、定义运算:mnmn2mn2例如:424224226若1x0,则x_三、解答题(5小题,每小题10分,共计50分)1、解方程:3x214x2、(1)用配方法解方程:3x26x10;(2)用公式法解方程:4x28x+303、(1)计算:(2)计算:(3)解方程:(4)解方程:4、解方程:(1)2(x1)2160;(2)x2+5x+73x+115、先化简,再求值,请从一元二次方程的两个根中选择一个
6、你喜欢的求值-参考答案-一、单选题1、A【分析】根据题意,将m代入方程中,得到,再将整理成,利用整体代入法解题即可【详解】解:是方程的根,故选A【点睛】本题考查一元二次方程的解、代数式的值、整体思想等知识,是重要考点,难度较易,掌握相关知识是解题关键2、A【分析】设有x人参加活动,每个人与其他人握手的次数均为次,并且每个人与其他人握手均重复一次,由此列出方程即可【详解】解:设有x人参加活动,每个人与其他人握手的次数均为次,并且每个人与其他人握手均重复一次,由此可得:,故选:A【点睛】题目主要考查一元二次方程的应用,理解题意,列出方程是解题关键3、A【分析】将常数项移到方程的右边,两边都加上一次
7、项系数一半的平方配成完全平方式后即可【详解】解:,即,故选A【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键4、C【分析】本题可先进行移项得到:x24x0,然后提取出公因式x,两式相乘为0,则这两个单项式必有一项为0【详解】解:原方程可化为:x24x0,提取公因式:x(x4)0,x0或x故选:C【点睛】本题主要考查了一元二次方程的计算,准确分析计算是解题的关键5、D【分析】根据根的判别式判断一元二次方程根的情况,再根据根与系数的关系求解即可【详解】解:A. ,不符合题意;B.
8、,该方程无实根,不符合题意;C. ,该方程无实根,不符合题意;D. ,该方程有实根,且,符合题意;故选D【点睛】本题考查了一元二次方程根与系数的关系,掌握根与系数的关系以及使用的前提条件是一元二次方程有实根,掌握一元二次方程根与系数的关系和根的判别式是解题的关键6、B【分析】先把一元二次方程化为一般形式,即可得出一次项系数【详解】一元二次方程化为一般形式,一次项系数是故选:B【点睛】本题考查一元二次方程的相关概念,一元二次方程一般形式:,其中为二次项系数,为一次项系数,为常数项7、C【分析】设该商店销售额平均每月的增长率为x,利用9月份的销售额7月份的销售额(1+增长率)2,即可得出关于x的一
9、元二次方程,解之取其正值即可得出该商店销售额平均每月的增长率为50%【详解】解:设该商店销售额平均每月的增长率为x,依题意得:2(1+x)24.5,解得:x10.550%,x22.5(不合题意,舍去)该商店销售额平均每月的增长率为50%故选:C【点睛】本题考查了一元二次方程的应用;解题的关键在于理解清楚题目的意思,根据条件找出等量关系,列出方程求解8、D【分析】首先根据a+b+c=3可得一元二次方程ax2+bx+c=3的一个根为,然后根据根与系数的关系可得,然后代入一元二次方程ax2bx+c=3中即可求解【详解】解:一元二次方程ax2+bx+c=3有一个根为x=2,且a+b+c=3,一元二次方
10、程ax2+bx+c=3有一个根为1,一元二次方程ax2+bx+c=3化成一般形式为ax2+bx+c-30,ax2bx+c=3化成一般形式为ax2-bx+c-30,即,或,解得:故选:D【点睛】此题考查了一元二次方程的解,因式分解法解一元二次方程,一元二次方程根与系数的关系,解题的关键是熟练掌握一元二次方程根与系数的关系9、D【分析】根据该药品的原售价及经过两次降价后的价格,即可得出关于x的一元二次方程,此题得解【详解】解:依题意得:128(1-x)2=88故选:D【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键10、C【分析】设长为x步,则宽为(6
11、0-x)步,根据矩形田地的面积为864平方步,即可得出关于x的一元二次方程,此题得解【详解】设长为x步,则宽为(60-x)步,依题意得:x(60-x)=864,整理得:故选:C【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键二、填空题1、(35-2x)(20-x)=660【分析】若设小道的宽为x米,则阴影部分可合成长为(35-2x)米,宽为(20-x)米的矩形,利用矩形的面积公式,即可得出关于x的一元二次方程,此题得解【详解】解:依题意,得:(35-2x)(20-x)=660故答案为:(35-2x)(20-x)=660【点睛】本题考查了由实际问题抽
12、象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键2、64(1+x)281【分析】如果每月的增长率都为x,根据某旅游景点6月份共接待游客64万人次,则7月份接待游客64(1+x)万人次,8月份共接待游客64(1+x)2万人次,根据题意可列出方程【详解】解:设每月的增长率都为x,列方程得64(1+x)281故答案为:64(1+x)281【点睛】本题考查了增长率问题,理解题意,用含x式子表示出8月份游客人次是解题关键3、30%【分析】设平均每年的增长率为x,则可得关于x的一元二次方程,解方程即可,但负根要舍去【详解】设我国头盔从2019年到2021年平均每年的增长率为x,由题意得:即
13、解得:,(舍去),即我国头盔从2019年到2021年平均每年增长率是30%故答案为:30%【点睛】本题考查了一元二次方程与增长率的问题,关键是理解题意,找到等量关系并列出方程4、0 0 【分析】一元二次方程的解,就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立;分别将1和1代入方程即可得到两个关系式的值【详解】将1代入方程得:,即;将1代入方程得:,即;故答案为0,0【点睛】本题考查了一元二次方程的根,即方程的解的定义,深刻理解根的定义是解题关键5、2或1【分析】根据题目中的新定于,可以将1x0转化为一元二次方程,然后求解即可【详解】解:mnmn2mn2,1x0,x
14、2x20,(x2)(x+1)0,解得x12,x21,故答案为:2或1【点睛】本题考查了一元二次方程的应用,解题的关键是列出相应的方程,会用新定义解答问题三、解答题1、【分析】对原方程进行移项,找出a、b、c的值,根据求根公式即可得出方程的解【详解】解:原方程移项得:,【点睛】题目主要考查解一元二次方程的方程:公式法,熟练掌握求根公式是解题关键2、(1)x1=,x2=;(2)x1=,x2=【分析】(1)移项,配方,开方,即可得出两个一元一次方程,求出方程的解即可;(2)求出b2-4ac的值,再代入公式求出即可【详解】解:(1)3x2-6x-1=0,x2-2x=,配方得:x2-2x+1=+1,(x
15、-1)2=,x-1=,x1=,x2=;(2)4x28x+3=0,a=4,b=-8,c=3,=64-443=160,x=,x1=,x2=【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键,注意:解一元二次方程的方法有:因式分解法、直接开平方法、公式法、配方法3、(1);(2);(3);(4)【分析】(1)根据算术平方根的性质、负整指数幂的性质、正弦定义等知识计算解题;(2)根据二次根式的性质、二次根式的乘除法法则、完全平方公式等知识计算解题,(3)利用配方法解题;(4)利用提公因式法结合整体思想解题【详解】解:(1);(2);(3)(4)或【点睛】本题考查实数的混合运
16、算、二次根式的乘除法、解一元二次方程等知识,涉及正弦、整体思想等知识,是重要考点,难度一般,掌握相关知识是解题关键4、(1)x11+2,x212;(2)x11+,x21【分析】(1)利用直接开平方法求出方程的解即可;(2)利用配方法求出方程的解即可【详解】解:(1)整理,得2(x1)216,(x1)28,x1,x11+2,x212;(2)整理,得x2+2x4,配方,得x2+2x+14+1,即(x+1)25, 解得:【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键5、;【分析】先根据分式的混合运算顺序和运算法则化简原式,再利用因式分解法解一元二次方程求出a的值,继而选择任意一个a的值代入计算即可【详解】解: (+3 +)= = = = 2-7+12=0=0 或 = 0,= 又, 当时,原式【点睛】本题主要考查分式的化简求值和解一元二次方程,解题的关键是掌握分式的混合运算顺序和运算法则及因式分解法解一元二次方程