《2021-2022学年京改版八年级数学下册第十六章一元二次方程难点解析试题(含解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年京改版八年级数学下册第十六章一元二次方程难点解析试题(含解析).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十六章一元二次方程难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若关于x的一元二次方程有一个根是,则a的值为( )AB0C1D或12、参加一次活动的每个人都和其他人各握了一
2、次手,所有人共握手10次,有多少人参加活动?设有x人参加活动,可列方程为( )ABCD3、下列命题中,逆命题不正确的是()A如果关于x的一元二次方程ax2+bx+c0(a0)没有实数根,那么b24ac0B线段垂直平分线上的任意一点到这条线段两个端点的距离相等C全等三角形对应角相等D直角三角形的两条直角边的平方和等于斜边的平方4、下列方程中,是一元二次方程的个数有()(1)x22x10;(2)20;(3)x22x10;(4)(a1)x2bxc0;(5)x2x4x2A2个B3个C4个D5个5、将方程化为一元二次方程的一般形式,正确的是( )ABCD6、已知三角形的两边长是4和6,第三边的长是方程(
3、x3)24的根,则此三角形的周长为()A17B11C15D11或157、已知一元二次方程x2k30有一个根为1,则k的值为( )A2B2C4D48、矩形ABCD的一条对角线长为6,边AB的长是方程的一个根,则矩形ABCD的面积为( )AB12CD或9、用配方法解方程x2+2x=1,变形后的结果正确的是( )A(x+1)2=-1B(x+1)2=0C(x+1)2=1D(x+1)2=210、把长为2 m的绳子分成两段,使较长一段的长的平方等于较短一段的长与原绳长的积设较长一段的长为x m,依题意,可列方程为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、关于x的
4、方程有两个不相等的实数根,则m的取值范围是_2、若关于x的一元二次方程x22xm0有一个根为1,则m的值为_3、关于x的一元二次方程x2+6x+m=0有两个相等的实数根,则m的值为_4、已知关于x的一元二次方程(k+1)x2+2x10有实数根,则k的取值范围是 _5、某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,设该厂四、五月份的月平均增长率为x,则可列方程为_三、解答题(5小题,每小题10分,共计50分)1、若关于x的一元二次方程x2bx20有一个根是x2,求b的值及方程的另一个根2、如图,在一块长为30m、宽为20m的矩形地面上,要修建两横两
5、竖的道路(横竖道路各与矩形的一条边平行),横、竖道路的宽度比为2:3,剩余部分种上草坪,如果要使草坪的面积是地面面积的四分之一,应如何设计道路的宽度?3、2021年12月9日,在神州十三号载人飞船上,翟志刚、王亚平、叶光富三位航天员为广大青少年开讲“天宫课堂”第一课,这是中国空间站首次太空授课活动在此期间,我校“对话太空”兴趣小组举行了航天科普知识有奖竞答活动,并购买“神州载人飞船”模型作为奖品,学校在商店里了解到:如果一次性购买数量不超过10个,每个模型的单价为40元;如果一次性购买数量超过10个,每多购买一个,每个模型的单价均降低0.5元,但每个模型最低单价不低于30元,若学校为购买“神州
6、载人飞船”模型一次性付给商店900元,请求出学校购买“神州载人飞船”模型的数量4、解方程:(1)(2)5、解方程:(1)x28x20; (2)2(2x3)2(2x3)10-参考答案-一、单选题1、A【分析】把代入方程得出,再求出方程的解即可【详解】关于x的一元二次方程有一个根是解得一元二次方程故选:A【点睛】此题主要考查了一元二次方程的解,注意二次项系数不能为零2、A【分析】设有x人参加活动,每个人与其他人握手的次数均为次,并且每个人与其他人握手均重复一次,由此列出方程即可【详解】解:设有x人参加活动,每个人与其他人握手的次数均为次,并且每个人与其他人握手均重复一次,由此可得:,故选:A【点睛
7、】题目主要考查一元二次方程的应用,理解题意,列出方程是解题关键3、C【分析】分别写出各个命题的逆命题,然后判断正误即可【详解】解:A.逆命题为:如果一元二次方程ax2+bx+c0(a0)中b24ac0,那么它没有实数根,正确,不符合题意;B.逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,不符合题意;C.逆命题为:对应角相等的两三角形全等,错误,符合题意;D.逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,不符合题意故选:C【点睛】本题考查了原命题、逆命题,命题的真假,一元二次方程根的判别式,线段垂直平分线,全等三角形的判定与性质,勾股定理极其
8、逆定理等知识,综合性较强,准确写出各选项的逆命题并准确判断是解题关键4、B【分析】根据一元二次方程的定义(只含有一个未知数,且未知数的最高次数为二次的整式方程,且二次项系数不为0)依次进行判断即可【详解】解:(1)是一元二次方程; (2)不是一元二次方程;(3)是一元二次方程;(4),的值不确定,不是一元二次方程;(5)是一元二次方程,共3个,故选:B【点睛】题目主要考查一元二次方的定义,深刻理解这个定义是解题关键5、B【分析】根据一元二次方程的概念,判断即可,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a0)特别要注意a0的条件在一般形式中ax2叫二次项,bx叫一次项,
9、c是常数项其中a,b,c分别叫二次项系数,一次项系数,常数项【详解】解:化为一元二次方程的一般形式为故选B【点睛】本题考查了一元二次方程的概念,掌握一元二次方程的一般形式是解题的关键6、C【分析】先求出方程的解,然后根据三角形三边关系利用三角形的两边之和大于第三边判断能否构成三角形,选择满足题意的第三边,即可求出三角形的周长【详解】解:(x3)24,x32,解得x15,x21若x5,则三角形的三边分别为4,5,6,其周长为4+5+615;若x1时,6421,不能构成三角形,7、B【分析】根据根的含义将代入一元二次方程x2k30求解即可【详解】解:一元二次方程x2k30有一个根为1,将代入得,解
10、得:故选:B【点睛】此题考查了已知一元二次方程的解求参数,解题的关键是熟练掌握一元二次方程解得概念8、D【分析】先求的两个根再根据矩形的性质,用勾股定理求得另一边长或,计算面积即可【详解】,(x-2)(x-5)=0,另一边长为=或=,矩形的面积为2=或5=5,故选D【点睛】本题考查了矩形的性质,勾股定理,一元二次方程的解法,熟练解方程,灵活用勾股定理是解题的关键9、D【分析】方程两边同时加上一次项系数一半的平方即可得到答案【详解】解:x2+2x=1,x2+2x+1=1+1,(x+1)2=2,故选D【点睛】本题考查配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次
11、项的系数化为1;(3)等式两边同时加上一次项系数一半的平方10、A【分析】由题意依据较长一段的长的平方等于较短一段的长与原绳长的积建立方程即可得出答案.【详解】解:设较长一段的长为x m,则较短一段的长为(2-x )m,由题意得:.故选:A.【点睛】本题考查一元二次方程的实际运用,根据题意找出题目蕴含的数量关系是解决问题的关键二、填空题1、【分析】利用判别式的意义得到,然后解不等式即可【详解】解:根据题意得,解得故答案是:【点睛】本题考查了根的判别式,解题的关键是掌握一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根2、【分析】根据关
12、于x的方程x2-2x+m=0的一个根是1,将x=1代入可以得到m的值,本题得以解决【详解】解:关于x的方程x2-2x+m=0的一个根是1,1-2+m=0,解得m=1,故答案为:1【点睛】本题考查一元二次方程的解,解题的关键是明确题意,找出所求问题需要的条件3、9【分析】根据方程有两个相等的实数根得出=0,据此列出关于m的方程,解之即可【详解】解:关于x的一元二次方程x2+6x+m=0有两个相等的实数根,=62-41m=0,解得m=9,故答案为:9【点睛】本题主要考查根的判别式,一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:当0时,方程有两个不相等的两个实数根;当=0时
13、,方程有两个相等的两个实数根;当0时,方程无实数根上面的结论反过来也成立4、且【分析】利用一元二次方程的定义和根的判别式的意义得到k+10且224(k+1)(1)0,然后求出两个不等式的公共部分即可【详解】解:根据题意得k+10且224(k+1)(1)0,解得k2且k1故答案为:k2且k1【点睛】本题考查一元二次方程根的判别式、解一元一次不等式等知识,是重要考点,难度较小,掌握相关知识是解题关键5、【分析】该厂四、五月份的月平均增长率为x,根据增长率公式即可得出五月份的产量是,据此列方程即可【详解】该厂四、五月份的月平均增长率为x,五月份的产量是,故答案为:【点睛】本题考查一元二次方程的应用,
14、解题的关键是正确列出一元二次方程原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到,再经过第二次调整就是,增长用“+”,下降用“”三、解答题1、b=-1,方程的另一个根是x=-1【分析】将x=2代入方程 得到b的值,然后解一元二次方程即可【详解】解:x=2是的一个根,解得b=-1,将b=-1代入原方程得,解得x1=-1,x2=2,b=-1,方程的另一个根是x=-1【点睛】本题主要考查了一元二次方程根的定义,解一元二次方程,解题的关键在于能够熟练掌握解一元二次方程的方法和熟知一元二次方程根的定义2、横着的道路的宽为,则竖着的道路宽为【分析】设横着的道路的宽为,则竖着的道
15、路宽为,然后根据要使草坪的面积是地面面积的四分之一,列出方程求解即可【详解】解:设横着的道路的宽为,则竖着的道路宽为,由题意得:,解得或,当时,不符合题意,横着的道路的宽为,则竖着的道路宽为【点睛】本题主要考查了一元二次方程的应用,解题的关键在于正确理解题意,列出方程求解3、30个【分析】设学校一次性购买这种“神州载人飞船”模型x个,然后找出等量关系,列出方程,解方程即可求出答案【详解】解:根据题意,设学校一次性购买这种“神州载人飞船”模型x个,则实际销售单价为:400.5(x10)=450.5x(元);,;,解得:或(舍去);学校购买30个“神州载人飞船”模型的数量【点睛】本题考查了一元二次
16、方程的应用,解题的关键是设出“神州载人飞船”模型的个数并表示出销售单价4、(1)原方程无解;(2)【分析】(1)方程两边同乘以化成整式方程,再解一元一次方程即可得;(2)方程两边同乘以化成整式方程,再解一元二次方程即可得【详解】解:(1),方程两边同乘以,得,移项、合并同类项,得,系数化为1,得,经检验,不是分式方程的解,所以原方程无解;(2),方程两边同乘以,得,移项、合并同类项,得,因式分解,得,解得或,经检验,不是分式方程的解;是分式方程的解,所以原方程的解为【点睛】本题考查了解分式方程,熟练掌握方程的解法是解题关键需注意的是,分式方程需进行检验5、(1)x143,x243;(2)x11,x2【分析】(1)通过移项配方,求出方程的解即可;(2)分解因式,即可得出两个一元一次方程,求出方程的解即可;【详解】解:(1)x28x20,移项得:x28x2,配方得:x28x+162+16,即 (x+4)218,x143,x243;(2)2(2x3)2(2x3)10因式分解得:(2x3)-12(2x3)+1=0,即:(2x+2)(4x+7)=0,x11,x2【点睛】本题考查了解一元二次方程,掌握因式分解法以及配方法解方程是解题的关键