《2021-2022学年基础强化京改版八年级数学下册第十七章方差与频数分布专项训练练习题.docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化京改版八年级数学下册第十七章方差与频数分布专项训练练习题.docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十七章方差与频数分布专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、体育老师让小明5分钟内共投篮50次,一共投进30个球,请问投进球的频率是( )A频率是0.5B频率是0.6
2、C频率是0.3D频率是0.42、某班在开展“节约每一滴水”的活动中,从全班40名同学中选出10名同学汇报了各自家庭一个月的节水情况,发现节水0.5m3的有2人,水1m3的有3人,节水1.5m3的有2人,节水2m3的有3人,用所学的统计知识估计全班同学的家庭一个月节约用水的总量是()A20m3B52m3C60m3D100m33、甲、乙两人一周中每天制作工艺品的数量如图所示,则对甲、乙两人每天制作工艺品数量描述正确的是( )A甲比乙稳定B乙比甲稳定C甲与乙一样稳定D无法确定4、若一组数据3,x,4,5,7的平均数为5,则这组数据中x的值和方差为( )A3和2B4和3C5和2D6 和25、为了解学生
3、课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计下图是整理数据后绘制的两幅不完整的统计图以下结论不正确的是( ) A由这两个统计图可知喜欢“科普常识”的学生有90人B若该年级共有1200名学生,则可估计喜爱“科普常识”的学生约有360个C由这两个统计图不能确定喜欢“小说”的人数D在扇形统计图中,“漫画”所在扇形的圆心角为6、在一次班级体测调查中,收集到40名同学的跳高数据,数据分别落在5个组内,且落入第一、二、三、五组的数据个数分别为2、7、11、12,则第四组频数为( )A9B8C7D67、在一个样本中,40个
4、数据分别落在5个小组内,第1,2,3,5小组的频数分别是6,5,15,7,则第4小组的频数是( )A7B8C9D108、从某工厂即将出售的一批产品中抽检件产品,其不合格的产品有件,则此抽样调查的样本中,样本容量和不合格的频率分别是( )A,B,C,D,9、小强每天坚持做引体向上的锻炼,下表是他记录的某一周每天做引体向上的个数星期日一二三四五六个数11121013131312对于小强做引体向上的个数,下列说法错误的是( )A平均数是12B众数是13C中位数是12.5D方差是10、数学老师将本班学生的身高数据(精确到1厘米)交给甲、乙两同学,要求他们各自绘制一幅频数分布直方图经确认,甲绘制的图是正
5、确的,乙在整理时漏了一个数据由此可判断,下列说法错误的是( )A该班共有学生60人B乙在整理时遗漏的数据一定在169.5-173.5这个范围内C某同学身高155厘米,那么班上恰有10人比他矮D某同学身高165厘米,那么班上比他高的人数不超过全班人数的25%第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、数据1,3,2,5和x的平均数是3,则这组数据的方差是_2、在频数分布直方图中,横坐标表示_,纵坐标表示各组的_,各个小长方形的面积等于相应各组的_,全体小长方形总面积即_,各小长方形面积占全体小长方形总面积的百分比好等于相应各组的_,等距分组时,通常直接用小长方形的高表
6、示_3、数据,的方差等于_4、某校学生自主建立了一个学习用品义卖社团,已知八年级200名学生义卖所得金额的频数分布直方图如图所示,那么4050元这个小组的组频率是_5、若一组数据,的方差为4.5,则另一组数据2,2,2,2的方差为_三、解答题(5小题,每小题10分,共计50分)1、为了遏制新型冠状病毒疫情的蔓延势头,某校为学生提供四类在线学习方式:在线阅读、在线听课、在线答疑、在线讨论,为了了解学生的需求,该校通过网络对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如图两幅不完整的统计图(1)本次调查的人数有多少人?(2)请补全条形图,并求出“在线答疑”在扇形图
7、中的圆心角度数;(3)若全校学生共有2000人,请你估计该校学生对“在线阅读”感兴趣共有多少人?2、国家应急管理部、司法部、中华全国总工会、全国普法办共同举办的第三届全国应急管理普法知识竞赛于今年10月18日开赛某校学生处在七年级和八年级开展了应急管理普法知识竞赛活动,并从七、八年级各随机抽取了40名同学的知识竞赛成绩数据,并将数据进行整理分析(竞赛成绩用x表示,共分为四个等级:Ax70,B70x80,C80x90,D90x100);下面给出了部分信息:七年级C等级中全部学生的成绩为:86, 87, 83, 88, 84, 88, 86, 89, 89, 85八年级D等级中全部学生的成绩为:9
8、2, 95, 98, 98, 98, 98, 98, 100, 100, 100七八年级抽取的学生知识竞赛成绩统计表平均数中位数众数满分率七年级91bc25%八年级918798m%根据以上信息,解答下列问题:(1)直接写出上述表中a,b,c,m的值;(2)根据以上数据,你认为该校七、八年级的知识竞赛,哪个年级的成绩更好,并说明理由(写出一条理由即可);(3)该校七年级的1800名学生和八年级的240名学生参加了此次知识竞赛,若成绩在90分(包含90分)以上为优秀,请你估计两个年级此次参加知识竞赛优秀的总人数3、某县教育局组织了一次经典诵读比赛,中学组有两队各10人的比赛成绩如下表:甲78971
9、0109101010乙10879810109109(1)甲队成绩的中位数是 分,乙队成绩的众数是 分;(2)计算乙队的平均成绩;(3)如果要从两个队中选择一对参加市级比赛,你认为安排哪个队更容易获奖4、在第二十二届深圳读书月来临之际,为了解某学校八年级学生每天平均课外阅读时间的情况,随机抽查了该学校八年级部分同学,对其每天平均课外阅读时间进行统计,并绘制了如图所示的不完整的统计图请根据相关信息,解答下列问题:(1)该校抽查八年级学生的人数为 ,图中的值为 ;(2)请将条形统计图补充完整;(3)求被抽查的学生每天平均课外阅读时间的众数、中位数和平均数;(4)根据统计的样本数据,估计该校八年级40
10、0名学生中,每天平均课外阅读时间为2小时的学生有多少人?5、为了解八年级学生的数学知识技能水平,教育局组织了一次数学知识竞赛,满分为100分为掌握甲、乙两校学生本次竞赛的情况,李老师分别从两个学校的成绩中都随机抽取20个进行整理和分析李老师将抽取的成绩用x表示,分为A、B、C、D、E五个等级(A:;B:;C:;D:;E:),已知部分信息如下:甲校抽取的20名同学的成绩(单位:分)为:91,83,92,80,79,82,82,77,82,80,75,63,56,85,91,70,82,76,64,82已知乙校抽取的成绩中,有1名同学的成绩不超过60分乙校抽取的学生成绩扇形统计图甲、乙两校抽取的学
11、生成绩数据统计表班级甲校乙校平均数78.678.4中位数b80众数c80根据以上信息,解答下列问题:(1)直接写出上述图表中a、b、c的值: , , ;(2)不用计算,根据统计表,判断哪个学校的成绩好一些?并说明理由;(3)若甲、乙两校的八年级学生人数分别为420人、450人,且都参加了此次知识竞赛,估计本次竞赛中,两个学校共有多少人的成绩达到A级?-参考答案-一、单选题1、B【分析】根据频率是指每个对象出现的次数与总次数的比值(或者百分比)即频率=频数总数可得答案【详解】解:小明进球的频率是3050=0.6,故选:B【点睛】此题主要考查了频率,关键是掌握计算方法2、B【分析】利用加权平均数求
12、出选出的10名同学每家的平均节水量再利用用样本估计总体,即由平均节水量乘以总人数即可求出最后结果【详解】,由此可估计全班同学的家庭一个月节约用水的总量是故选:B【点睛】本题考查加权平均数和由样本估计总体正确的求出样本的平均值是解答本题的关键3、C【分析】先根据折线统计图得出甲、乙每天制作的个数,从而得出两组数据之间的关系,继而得出方差关系【详解】解:由折线统计图知,甲5天制作的个数分别为15、20、15、25、20,乙5天制作的个数分别为10、15、10、20、15,甲从周一至周五每天制作的个数分别比乙每天制作的个数多5个,甲、乙制作的个数稳定性一样,故选:C【点睛】本题主要考查了利用方差进行
13、决策,准确分析判断是解题的关键4、D【分析】先根据平均数定义求出x,再根据方差公式计算即可求解【详解】解:由题意得,解得x=6,这组数据的方差是故选:D【点睛】本题考查了平均数的定义和求一组数据的方差,熟知平均数的定义和方差公式是解题关键5、C【分析】根据两个统计图的特征依次分析各选项即可作出判断,先根据其他类求得总人数,进而根据扇形统计图求得喜欢“科普常识”的学生人数,从而判断A选项,根据喜欢“科普常识”的学生所占的百分比乘以全年级人数即可判断B选项,根据总人数减去其他项的人数即可求的喜欢“小说”的人数,从而判断C选项,根据喜欢“漫画”的人数求得百分比,进而求得所占圆心角的度数从而判断D选项
14、【详解】A喜欢“科普常识”的学生有3010%30%=90人,正确,不符合题意;B若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有120030%=360个,正确,不符合题意;C喜欢“小说”的人数为3010%-60-90-30=120人,错误,故本选项符合题意.D在扇形统计图中,“漫画”所在扇形的圆心角为36060(3010%)=72,正确,不符合题意;故选C.【点睛】本题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小6、B【分析】根据
15、题意可得:共40个数据,知道一、二、三、五组的数据个数,用总数减去这几组频数,即可得到答案【详解】解:由题意得:第四组的频数=40-(2+7+11+12)=8;故选B【点睛】本题是对频数的考查,掌握各小组频数之和等于数据总和是解题的关键7、A【分析】每组的数据个数就是每组的频数,40减去第1,2,3,5小组数据的个数就是第4组的频数【详解】解:第4小组的频数是40(65157)7,故选:A【点睛】本题考查频数和频率的知识,注意掌握每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和8、C【分析】直接利用样本容量的定义以及结合频数除以总数=频率得出答案【详解】解:从某工厂即
16、将出售的一批产品中抽检100件产品,其中不合格的产品有8件,此抽样样本中,样本容量为:100,不合格的频率是:=0.08故选:C【点睛】本题主要考查了频数与频率,正确掌握频率求法是解题关键9、C【分析】根据平均数的定义:一组数据的总和除以这组数据的个数所得的商,叫做这组数据的算术平均数,简称平均数;众数的定义:一组数据中出现次数最多的数据;中位数的定义:一组数据中,处在最中间或处在最中间的两个数的平均数;方差的定义:一组数据中各个数据与它们平均数的差的平方的和的平均数,进行求解即可【详解】解:由题意得它们的平均数为:,故选项A不符合题意;13出现的次数最多,众数是13,故B选项不符合题意;把这
17、组数据从小到大排列为:10、11、12、12、13、13、13,处在最中间的数是12,中位数为12,故C选项符合题意;方差:,故D选项不符合题意;故选C【点睛】本题主要考查了平均数,中位数,众数和方差,解题的关键在于能够熟知相关定义10、B【分析】由两幅统计图的数据逐项计算判断即可【详解】解:根据甲绘制的统计图,可知该班共有学生10+15+20+10+5=60(人),故A正确,不符合题意;根据甲绘制的统计图,可知该班身高小于154.5的学生有10人,故C正确,不符合题意;根据甲绘制的统计图,可知该班身高大于或等于165的学生有15人,故D正确,不符合题意;根据甲的直方图能够得出身高在(169.
18、5174.5)cm之间的人数为5人,从乙图中发现,身高在(169.5173.5)cm的人数是4人,因此,乙在整理时遗漏的数据一定在169.5-174.5这个范围内,故B错误,符合题意;故选B【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题二、填空题1、2【分析】先由平均数的公式计算出x的值,再根据方差的公式计算一般地设n个数据,x1,x2,xn的平均数为,(x1+x2+xn),则方差 【详解】解:x=53-1-3-2-5=4,s2= (1-3)2+(3-3)2+(2-3)2+(5-3)2+(4-
19、3)2=2故答案为:2【点睛】本题考查了方差的定义:一般地设n个数据,x1,x2,xn的平均数为,(x1+x2+xn),则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立2、组距 频数 样本容量 频率 频数 【分析】根据画频数直方图的相关概念分析即可【详解】在频数分布直方图中,横坐标表示组距,纵坐标表示各组的,各个小长方形的面积等于相应各组的频数,全体小长方形总面积即样本容量,各小长方形面积占全体小长方形总面积的百分比好等于相应各组的频率,等距分组时,通常直接用小长方形的高表示频数故答案为:组距;频数;样本容量;频率;频数【点睛】本题考查了频数直方图,掌握画频数直方图是解题的
20、关键3、1.2【分析】根据平均数的计算公式先求出这组数据的平均数,再根据方差的公式计算即可【详解】解:这组数据的平均数是:=4,则这组数据的方差是:=1.2,故答案为:1.2【点睛】本题考查方差的定义,掌握方差的计算方法是解题的关键,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立4、0.15【分析】求出4050元的人数,再根据频率频数总数进行计算即可【详解】解:“4050元”的人数为:2001030508030(人),“4050元”的频率为:302000.15,故答案为:0.15【点睛】本题考查频数分布直方图,掌握频率频数总数是正确解答的关键5、18【分析】根据方差的计算公式计算
21、即可【详解】设,的平均数为,则2,2,2,2的平均数为2,数据,的方差为4.5,=,=18,故答案为:18【点睛】本题考查了方差的计算,熟练掌握方差的计算公式是解题的关键三、解答题1、(1)100人;(2)图形见解析,72;(3)500人【分析】(1)根据“在线阅读”的人数和比例即可求解总人数;(2)根据总人数,求出“在线答疑”的人数,然后补全条形统计图;利用“在线答疑”的人数总人数360即可得到对应圆心角的度数;(3)根据“在线阅读”人数的占比总人数即可得到结论【详解】解:(1)2525%=100(人),本次调查的人数为100人;(2)本次调查的人数为100人,“在线答疑”的人数为:100-
22、25-40-15=20(人),补全条形统计图如图所示:“在线答疑”所占圆心角度数为:;(3)由题意,对“在线阅读”感兴趣的人数占比为:,(人),估计该校学生对“在线阅读”感兴趣共有500人【点睛】本题考查条形统计图与扇形统计图信息综合,通过对条形统计图与扇形统计图信息的分析,准确求出调查的总人数是解题关键2、(1)a=10,b=89,c=100,m=7.5;(2)七年级的成绩更好,理由见解析;(3)估计两个年级此次知识竞赛中优秀的人数约为873人【分析】(1)用七年级C等人数除以40即可得出C等所占比例,再用单位“1”分别减去B、C、D所占比例即可得出a的值;根据中位数的定义(将一组数据按照从
23、小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数)可得b的值;根据众数的定义(一组数据中出现次数最多的数据叫做众数)可得c的值;用满分人数除以40即可得出m的值;(2)根据中位数,满分率解答即可;(3)总人数乘以90分(包含90分)以上人数所占比例即可【详解】解:(1)七年级C等有10人,C等所占比例为100%25%,a%=1-20%-45%-25%=10%,a=10,七年级A等有:4010%=4(人),B等有:4020%=8(人),把七年级所抽取了40名同学的知识竞赛成绩从低到高排
24、列,排在最中间的是第20名和第21名的成绩,分别是89,89,中位数b=89;七年级满分人数为:4025%=10(人),众数c=100;八年级满分率为:100%7.5%,m=7.5;(2)因为两个年级的平均数相同,而七年级的中位数、众数和满分率都过于八年级,所以七年级的成绩更好;(3)180045%+250100%873(人),答:估计两个年级此次知识竞赛中优秀的人数约为873人【点睛】本题考查扇形统计图、中位数、众数、平均数、利用数据进行决策,用样本估计总体等知识点,熟悉掌握相关知识点是正确解答的关键3、(1)9.5,10;(2)9;(3)甲,乙的平均分均为9分,但是甲的方差为1.4,乙的方
25、差为1,所以乙队的成绩更加稳定,选择乙【分析】(1)先将甲队的成绩按从小到大的顺序排列,可得位于第5位和第6位的分别为9和10 ,可得甲队成绩的中位数是9.5分,再由乙队成绩中10出现的次数最多,可得乙队成绩的众数是10分;(2)利用乙队成绩的总和除以10,即可求解;(3)分别两队的平均成绩和方差,即可求解【详解】解:(1)将甲队的成绩按从小到大的顺序排列为:7、7、8、9、9、10、10、10、10、10,位于第5位和第6位的分别为9和10 ,甲队成绩的中位数是 分,乙队成绩中10出现了4次,出现的次数最多,乙队成绩的众数是10分;(2)乙队的平均成绩为 分;(3)甲队的平均成绩为 分,甲队
26、成绩的方差为乙队成绩的方差为,甲,乙的平均分均为9分,但是甲的方差为1.4,乙的方差为1,乙队的成绩更加稳定,选择乙【点睛】本题主要考查了求一组数据的中位数,众数,平均数,利用方差做决策,熟练掌握一组数据中位于正中间的一个数或两个数的平均数是中位数;出现次数最多的数是众数;平均数等于数据的总和除以个数;方差越小,越稳定是解题的关键4、(1)100,18;(2)见解析;(3)(4)72人【分析】(1)根据每天平均课外阅读时间为1小时的占30%,共30人,即可求得总人数;(2)根据总数减去其他三项即可求得每天平均课外阅读时间为1.5小时的人数进而补充条形统计图;(3)根据条形统计图可知阅读时间为1
27、.5小时的人数最多,故学生每天平均课外阅读时间的众数为1.5,根据第50和51个都落在阅读时间为1.5小时的范围内,即可求得中位数为1.5,根据求平均数的方法,求得100个学生阅读时间的平均数(4)根据扇形统计图可知,每天平均课外阅读时间为2小时的比例为,400乘以18%即可求得【详解】(1)总人数为:(人);故答案为:(2)每天平均课外阅读时间为1.5小时的人数为:(人)补充条形统计图如下:(3)根据条形统计图可知抽查的学生每天平均课外阅读时间的众数为1.5中位数为1.5,平均数为;(4)(人)估计该校八年级400名学生中,每天平均课外阅读时间为2小时的学生有人【点睛】本题考查了条形统计图与
28、扇形统计图信息关联,求众数、中位数和平均数,样本估算总体,从统计图中获取信息是解题的关键5、(1),;(2)甲校的成绩好一些,因为甲校成绩的平均数、众数和中位数都高于乙校,所以甲校的成绩要好一些;(3)108人【分析】(1)B等的人数=20-20(10+10+35)-1=8,于是,可以确定a值;先将数据排序,计算第10个,11个数据的平均数即可得到b;确定出现次数最多的数据即可;(2)比较平均数,中位数,众数的大小,判断即可;(3)甲校约有人,乙校约有人,求和即可【详解】(1)B等的人数=20-20(10+10+35)-1=8,a=40;第10个,11个数据是80,82,b=;82出现次数最多,是5次,众数c=82;故答案为:40,81,82;(2)甲校的成绩好一些,因为甲校成绩的平均数、众数和中位数都高于乙校,所以甲校的成绩要好一些; (3)由题意,甲校约有人,乙校约有人,两校共约有63+45=108人的成绩达到A级【点睛】本题考查了扇形统计图,众数,平均数,中位数,样本估计总体的思想,熟练掌握三数的定义,并灵活计算是解题的关键