《2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系章节测试试题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系章节测试试题(无超纲).docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学第二学期第十五章平面直角坐标系章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、点在( )A第一象限B第二象限C第三象限D第四象限2、在平面直角坐标系中,点P(-2,3)关于x轴对称的点的
2、坐标是 ( )A(3,2)B(2,3)C(3,2)D(2,3)3、已知点A(n,3)在y轴上,则点B(n-1,n+1)在第()象限A四B三C二D一4、在平面直角坐标系中,点A(0,3),B(2,1),经过点A的直线lx轴,C是直线l上的一个动点,当线段BC的长度最短时,点C的坐标为()A(0,1)B(2,0)C(2,1)D(2,3)5、在ABC中,ABAC,点B,点C在直角坐标系中的坐标分别是(2,0),(2,0),则点A的坐标可能是( )A(0,2)B(0,0)C(2,2)D(2,2)6、根据下列表述,能确定位置的是( )A光明剧院8排B毕节市麻园路C北偏东40D东经116.16,北纬36.
3、397、如图,A、B两点的坐标分别为A(2,2)、B(4,2),则点C的坐标为( )A(2,2)B(0,0)C(0,2)D(4,5)8、点P(2,b)与点Q(a,3)关于x轴对称,则ab的值为( )A5B5C1D19、将点P(2,1)以原点为旋转中心,顺时针旋转90得到点P,则点P的坐标是()A(2,1)B(2,1)C(1,2)D(1,2)10、点P(3,1)关于原点对称的点的坐标是( )A(3,1)B(3,1)C(3,1)D(3,1)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点P坐标为(2,3),则点P关于x轴对称的点的坐标为_;点P关于原点
4、对称的点坐标为_2、在平面直角坐标系中,点(2,5)关于原点对称的点的坐标是_3、若点(1,m)与点(n,2)关于y轴对称,则的值为_4、坐标平面内的点P(m,2020)与点Q(2021,n)关于原点对称,则mn_5、点到轴的距离是_三、解答题(10小题,每小题5分,共计50分)1、如图,已知ABC三个顶点的坐标分A(3,2),B(1,3),C(2,1)将ABC先向右平移4个单位,再向下平移3个单位后,得到ABC,点A,B,C的对应点分别为A、B、C(1)根据要求在网格中画出相应图形;(2)写出ABC三个顶点的坐标2、在平面直角坐标系中,的顶点,的坐标分别为,与关于轴对称,点,的对应点分别为,
5、请在图中作出,并写出点,的坐标3、如图,平面直角坐标系中ABC的三个顶点分别是A(4,3),B(2,4),C(1,1)(1)将ABC绕点O逆时针旋转90,画出旋转后的A1B1C1;(2)作出ABC关于点O的中心对称图形A2B2C2;(3)如果ABC内有一点P(a,b),请直接写出变换后的图形中对应点P1、P2的坐标4、如图所示,在平面直角坐标系中,的顶点坐标分别是,和(1)已知点关于轴的对称点的坐标为,求,的值;(2)画出,且的面积为 ;(3)画出与关于轴成对称的图形,并写出各个顶点的坐标5、如图1,将射线OX按逆时针方向旋转角,得到射线OY,如果点P为射线OY上的一点,且OP=a,那么我们规
6、定用(a,)表示点P在平面内的位置,并记为P(a,)例如,图2中,如果OM=8,XOM=110,那么点M在平面内的位置,记为M(8,110),根据图形,解答下面的问题:(1)如图3,如果点N在平面内的位置记为N(6,30),那么ON=_;XON=_(2)如果点A,B在平面内的位置分别记为A(5,30),B(12,120),画出图形并求出AOB的面积6、如图,在平面直角坐标系中,已知点A(1,4),B(4,4),C(2,1)(1)请在图中画出ABC;(2)将ABC向左平移5个单位,再沿x轴翻折得到A1B1C1,请在图中画出A1B1C1;(3)若ABC 内有一点P(a,b),则点P经上述平移、翻折
7、后得到的点P1的坐是 7、已知点A(a+2b,1),B(2,2ab),若点A,B关于y轴对称,求a+b的值8、如图,在直角坐标系中,点A(3,3),B(4,0),C(0,2)(1)画出ABC关于原点O对称的A1B1C1(2)求A1B1C1的面积9、如图,在平面直角坐标系中,已知线段AB;(1)请在y轴上找到点C,使ABC的周长最小,画出ABC,并写出点C的坐标;(2)作出ABC关于y轴对称的ABC;(3)连接BB,AA求四边形AABB的面积10、如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3)(1)作出ABC关于y轴的对称图形ABC;(2)写出点A,B,C的坐标;(3)
8、在y轴上找一点P,使PA+PC的长最短-参考答案-一、单选题1、C【分析】根据各象限内点的坐标特征解答【详解】解:点的横坐标小于0,纵坐标小于0,点所在的象限是第三象限故选:C【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,);第二象限(,);第三象限(,);第四象限(,)2、D【分析】根据点关于x轴对称,横坐标不变,纵坐标变为相反数解答即可【详解】解:点P(2,3)关于x轴对称的点的坐标是(2,3)故选:D【点睛】本题考查了直角坐标系中关于x轴对称点的性质,正确记忆横纵坐标的关系是解题的关键3、C【分析】直接利用y轴
9、上点的坐标特点得出n的值,进而得出答案【详解】解:点A(n,3)在y轴上,n=0,则点B(n-1,n+1)为:(-1,1),在第二象限故选:C【点睛】本题主要考查了点的坐标,正确得出n的值是解题关键4、D【分析】根据垂线段最短可知BCl,即BCx轴,由已知即可求解【详解】解:点A(0,3),经过点A的直线lx轴,C是直线l上的一个动点,点C的纵坐标是3,根据垂线段最短可知,当BCl时,线段BC的长度最短,此时, BCx轴,B(2,1),点C的横坐标是2,点C坐标为(2,3),故选:D【点睛】本题考查坐标与图形、垂线段最短,熟知图形与坐标的关系,掌握垂线段最短是解答的关键5、A【分析】由题意可知
10、BOCO,又ABAC,得点A在y轴上,即可求解【详解】解:由题意可知BOCO,又ABAC,AOBC,点A在y轴上,选项A符合题意,B选项三点共线,不能构成三角形,不符合题意;选项C、D都不在y轴上,不符合题意;故选:A【点睛】本题考查了平面直角坐标系点的特征,解题关键是分析出点A的位置6、D【分析】根据位置的确定需要两个条件对各选项分析判断即可得解【详解】解:光明剧院8排,没有明确具体位置,故此选项不合题意;毕节市麻园路,不能确定位置,故此选项不合题意;北偏东,没有明确具体位置,故此选项不合题意;东经,北纬,能确具体位置,故此选项符合题意;故选:D【点睛】本题考查了坐标确定位置,解题的关键是理
11、解位置的确定需要两个条件7、B【分析】根据A、B两点的坐标建立平面直角坐标系即可得到C点坐标【详解】解:A点坐标为(-2,-2),B点坐标为(4,-2),可以建立如下图所示平面直角坐标系,点C的坐标为(0,0),故选B【点睛】本题主要考查了写出坐标系中点的坐标,解题的关键在于能够根据题意建立正确的平面直角坐标系8、B【分析】根据关于x轴对称的两点的坐标特征:横坐标相同,纵坐标互为相反数,即可求得a与b的值,从而求得a+b的值【详解】点P(2,b)与点Q(a,3)关于x轴对称a=2,b=3a+b=2+(3)=5故选:B【点睛】本题考查了关于x轴对称的两点的坐标特征,掌握这个特征是关键9、D【分析
12、】如图,作PEx轴于E,PFx轴于F利用全等三角形的性质解决问题即可【详解】解:如图,作PEx轴于E,PFx轴于F PEOOFPPOP90,POE+POF90,POF+P90,POEP,OPOP,POEOPF(AAS),OFPE1,PFOE2,P(1,-2)故选:D【点睛】本题考查旋转变换,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题10、C【分析】据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),然后直接作答即可【详解】解:根据中心对称的性质,可知:点P(3,1)关于原点O中心对称的点的坐标为(3,1)故选:C【点睛】本题考查关于原
13、点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形二、填空题1、(2,-3) (2,-3) 【分析】根据关于x轴对称点的坐标以及关于原点对称点的性质得出答案【详解】解:点P坐标为(2,3),则点P关于x轴对称的点的坐标为(2,-3);点P关于原点对称的点坐标为(2,-3)故答案为:(2,-3);(2,-3)【点睛】本题主要考查了关于x轴对称点的坐标以及关于原点对称点的坐标,关键是掌握坐标的变化特点关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于原点对称点的坐标特点:横坐标互为相反数、纵坐标互为相反数2、(2,-5)【分析】根据平面直角坐标系中任意一点P
14、(x,y),关于原点的对称点是(-x,-y)【详解】解:根据中心对称的性质,得点P(-2,5)关于原点对称点的点的坐标是(2,-5)故答案为:(2,-5)【点睛】本题主要考查了关于原点对称的点坐标的关系,是需要识记的基本问题记忆方法是结合平面直角坐标系的图形记忆,比较简单3、3【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出m、n的值,然后相加计算即可得解【详解】解:点(1,m)与点(n,2)关于y轴对称,;故答案为:3【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对
15、称的点,纵坐标相同,横坐标互为相反数4、-1【分析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”求出m、n的值,然后相加计算即可得解【详解】解:点P(m,-2020)与点Q(2021,n)关于原点对称,m=2021,n=2020,mn=1.故答案为:-1.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数5、2【分析】由点到坐标轴的距离定义可知点到轴的距离是2【详解】解:点A的纵坐标为-2点到轴的距离是故答案为:2【点睛】本题考查了点到坐标轴的距离,点P的坐标为,那么点P到x轴的距离为这点纵坐标的绝对值,即,点P到y轴的距离为这点横坐标的绝对
16、值,即三、解答题1、(1)见解析;(2),【分析】(1)利用平移变换的性质分别作出,的对应点,即可(2)根据平面直角坐标系写出,的坐标【详解】解:(1)如图,即为所求,(2)根据平面直角坐标系可得:,【点睛】本题考查作图平移变换等知识,解题的关键是掌握平移变换的性质,属于中考常考题型2、作图见解析,点,点,点【分析】分别作出A,B,C的对应点,即可【详解】解: 如图所示点,点,点【点睛】本题考查了作图-轴对称变换,直角坐标系中表示点的坐标,熟知关于y轴对称的点的坐标特点是解答此题的关键3、(1)见解析;(2)见解析;(3)【分析】(1)找到绕点O逆时针旋转90的对应点,顺次连接,则即为所求;(
17、2)找到关于点O的中心对称的对应点,顺次连接,则即为所求;(3)根据A(4,3),B(2,4),C(1,1)经过旋转变换得到的,即横纵坐标的绝对值交换,且在第三象限,都取负号,即可求得,根据中心对称,横纵坐标都取相反数即可求得【详解】(1)如图所示,找到绕点O逆时针旋转90的对应点,顺次连接,则即为所求;(2)如图所示,找到关于点O的中心对称的对应点,顺次连接,则即为所求;(3)【点睛】本题考查了求关于原点中心对称的点的坐标,绕原点旋转90度的点的坐标,画旋转图形,画中心对称图形,图形与坐标,掌握中心对称与旋转的性质是解题的关键4、(1),;(2)作图见详解;13;(3)作图见详解;,【分析】
18、(1)利用关于x轴的对称点的坐标特点(横坐标不变,纵坐标互为相反数)直接写出答案即可;(2)先确定A、B、C点的位置,然后顺次连接,最后运用割补法计算三角形面积即可;(3)先确定A、B、C三点关于y轴对称的对称点位置,然后顺次连接即可;最后直接写出三个点的坐标即可【详解】解:(1)点关于x轴的对称点P的坐标为,;(2)如图:即为所求,SABC=84-1218-1232-1264=13,故答案为:13;(3)如图:A、B、C点关于y轴的对称点为:,顺次连接,即为所求,【点睛】此题主要考查了轴对称变换的作图题,确定组成图形关键点的对称点是解答本题的关键5、(1)6,30;(2)见解析,30【分析】
19、(1)由题意得第一个坐标表示此点距离原点的距离,第二个坐标表示此点与原点的连线与x轴所夹的角的度数;(2)根据相应的度数判断出AOB的形状,再利用三角形的面积公式求解即可【详解】(1)根据点N在平面内的位置N(6,30)可知,ON=6,XON=30.答案:6,30(2)如图所示:A(5,30),B(12,120),BOX=120,AOX=30,AOB=90,OA=5,OB=12,AOB的面积为OAOB=30.【点睛】本题考查了坐标确定位置及旋转的性质,解决本题的关键是理解所给的新坐标的含义6、(1)见解析;(2)见解析;(3)(a5,b)【分析】(1)结合直角坐标系,可找到三点的位置,顺次连接
20、即可得出ABC(2)将各点分别向左平移5个单位长度,再作出关于x轴的对称点,顺次连接即可得到A1B1C1;(3)根据点的坐标平移规律可得结论【详解】解:(1)如图,ABC即为所画(2)如图,A1B1C1即为所画(3)点P(a,b)向左平移5个单位后的坐标为(a5,b),关于x轴对称手点的坐标为(a5,b) 故答案为:(a5,b)【点睛】此题考查了平移作图、轴对称变换以及直角坐标系的知识,解答本题的关键是掌握平移和轴对称的特点,找到各点在直角坐标系的位置7、【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列方程组求出a、b的值,然后相加计算即可得解【详解】解:点A(a+2b,1),
21、B(2,2ab)关于y轴对称,解得,a+b【点睛】本题考查了关于y轴对称的点的坐标特征,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数8、(1)图形见解析;(2)5【分析】(1)根据关于原点对称的点的坐标特征,依次求出的坐标即可;(2)利用割补法求A1B1C1面积【详解】(1)ABC关于原点O对称的A1B1C1位置如图:(2)【点睛】此题考查了中心对称的知识,解答本题的关键是根据关于原点对称的点的坐标特征得到各点的对应点9、(1)见详解,点C
22、的坐标为(0,4);(2)见详解;(3)16【分析】(1)作B点关于y轴的对称点 连接与y轴的交点即为C点,即可求出点C的坐标;(2)根据网格画出ABC关于y轴对称的ABC即可;(3)根据梯形面积公式即可求四边形AABB的面积【详解】解:(1)所要求作ABC 如图所示,点C的坐标为(0,4);(2)ABC即为所求;(3)点A,B,A,B的坐标分别为:(3,1)、(1,5)、(3,1)、(1,5);四边形AABB的面积为: = (2+6)416【点睛】本题考查了作图轴对称变换,解决本题的关键是掌握轴对称的性质10、(1)见解析;(2)A(1,5),B(1,0),C(4,3);(3)见解析【分析】(1)分别作出点A、B、C关于y轴的对称点,再收尾顺次连接即可得;(2)根据ABC各顶点的位置,写出其坐标即可;(3)连接PC,则PC=PC,根据两点之间线段最短,可得PA+PC的值最小【详解】解:(1)如图所示,ABC为所求作;(2)由图可得,A(1,5),B(1,0),C(4,3);(3)如图所示,连接AC,交y轴于点P,则点P即为所求作【点睛】本题主要考查了利用轴对称变换作图以及最短距离的问题,解题时注意:凡是涉及最短距离的问题,一般要考虑线段的性质定理,运用轴对称变换来解决,多数情况要作点关于某直线的对称点关于y轴对称的点,纵坐标相同,横坐标互为相反数