《2021-2022学年京改版八年级数学下册第十七章方差与频数分布难点解析试卷(无超纲带解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年京改版八年级数学下册第十七章方差与频数分布难点解析试卷(无超纲带解析).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十七章方差与频数分布难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、用计算器计算方差时,要首先进入统计计算状态,需要按键( )ABCD2、某校八年级人数相等的甲、乙、丙三个班
2、,同时参加了一次数学测试,对成绩进行了统计分析,平均分都是72分,方差分别为,则成绩波动最小的班级( )A甲B乙C丙D无法确定3、班级准备推选一名同学参加学校演讲比赛,在五轮班级预选赛中,甲、乙、丙三名同学五轮预选赛成绩的平均数和方差如下表所示:甲乙丙平均数/分969597方差0.422丁同学五轮预选赛的成绩依次为:97分、96分、98分、97分、97分,根据表中数据,要从甲、乙、丙、丁四名同学中选择一名成绩好又发挥稳定的同学参赛应该选择( )A甲B乙C丙D丁4、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是110分,方差分别是S甲26,S乙224,S丙225.5,S丁236,则这四名学
3、生的数学成绩最稳定的是()A甲B乙C丙D丁5、若一组数据3,x,4,5,7的平均数为5,则这组数据中x的值和方差为( )A3和2B4和3C5和2D6 和26、篮球队5名场上队员的身高(单位:cm)分别是:189,191,193,195,196现用一名身高为192cm的队员换下身高为196cm的队员,与换人前相比,场上队员的身高( )A平均数变小,方差变小B平均数变小,方差变大C平均数变大,方差变小D平均数变大,方差变大7、在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是1.2,1.1,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确的是( )A乙比
4、甲稳定B甲比乙稳定C甲和乙一样稳定D甲、乙稳定性没法对比8、某校九年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”;B、“5G时代”;C、“智轨快运系统”;D、“东风快递”;E、“高铁”,统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G时代”的频率是( )A0.25B0.3C2D309、下图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在小组,而不在小组),根据图形提供的信息,下列说法中错误的是( )A该学校教职工总人数是50人B
5、年龄在小组的教职工人数占总人数的20%C某教师40岁,则全校恰有10名教职工比他年轻D教职工年龄分布最集中的在这一组10、某养羊场对200头生羊量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg及以上的生羊的只数是( )A180B140C120D110第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若式子的值为非负数,则满足条件的所有整数a的方差是_2、某果农随机从甲、乙、丙三个品种的批把树中各选5棵,每棵产量的平均数(单位:千克)及方差(单位:千克2)如表所示,他准备从这三个品种中选出一种产量既高又稳定的批把树进行种植
6、,则应选的品种是 _ 甲乙丙454542S21.82.31.83、一组数据5, 4, 2, 4, 5的方差是_4、一组数据0,1,3,2,4的平均数是_,这组数据的方差是_5、已知一组数据的平均数是5,极差为3,方差为2,则另一组新数组的平均数是_,极差是_,方差是_三、解答题(5小题,每小题10分,共计50分)1、近日,教育部印发通知,决定实施青少年急救教育行动计划,开展全国学校急救教育试点工作某校为普及急救知识,进行了相关知识竞赛,现从七、八年级中各随机抽取20名学生的竞赛成绩进行整理、描述和分析(成绩得分用x表示,共分为四个等级:A.60x70,B.70x80,C.80x90,D.90x
7、100),下面给出了部分信息七年级20名学生的竞赛成绩是:62,68,75,80,82,85,86,88,89,90,90,95,96,98,99,99,99,99,100,100八年级20名学生的竞赛成绩中C等级包含的所有数据为:82,84,85,86,88,89七、八年级抽取的学生竞赛成绩统计表 年级七年级八年级平均数8989中位数90b众数c100根据以上信息,解答下列问题:(1)填空:上述图表中a ,b c ;(2)根据图表中的数据,判断七、八年级中哪个年级学生竞赛成绩更好?请说明理由(写出一条理由即可);(3)该校七、八年级共2000名学生参加了此次竞赛活动,估计竞赛成绩为D等级的学
8、生人数是多少?2、一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6分)为合格,成绩达到9分为优秀这次测验中甲乙两组学生成绩分布的折线统计图如下:(1) 请补充完成下面的成绩统计分析表:平均分方差中位数合格率优秀率甲组( )3.76( )9030乙组7.2( )7.58020(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组;但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出两条支持乙组学生观点的理由3、数学小组对当地甲、乙两家网约车公司司机的月收入情况进行了抽样调查两家公司分别随机抽取10名司机,他们的月收入(单位:千元)情况如图所示
9、将以上信息整理分析如下:平均数中位数众数方差甲公司a7cd乙公司7b57.6(1)填空:a_;b_;c_;d_;(2)某人计划从甲、乙公司中选择一家做网约车司机,你建议他选哪家公司?说明理由4、贵州省教育厅下发了在全省中小学幼儿园广泛开展节约教育的通知,通知中要求各学校全面持续开展“光盘行动”铜仁市教育局督导检查组为了调查学生对“节约教育”内容的了解程度(程度分为:“A了解很多”,“B了解较多”,“C了解较少”,“D不了解”),对本市一所中学的学生进行了抽样调查,我们将这次调查的结果绘制了以下两幅统计图根据以上信息,解答下列问题:(1)本次抽样调查了多少名学生?(2)补全两幅统计图;(3)若该
10、中学共有1900名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名?5、甲、乙两名队员参加射击训练,每人射击10次,成绩分别如下:平均成绩中位数众数方差甲a771.2乙7b8c根据以上信息,整理分析数据如下:(1)填空:a ;b ;c ;(2)从平均数和中位数的角度来比较,成绩较好的是 ;(填“甲”或“乙”)(3)若需从甲、乙两名队员中选择一人参加比赛,你认为选谁更加合适?请说明理由-参考答案-一、单选题1、B【分析】由于不同的计算器,其操作不完全相同,可以根据计算器的说明书进行操作【详解】解:用计算器求方差的一般步骤是:使计算器进入MODE2状态;依次输入各数据;
11、按求的功能键,即可得出结果故选:B【点睛】本题主要考查了计算器求方差,正确掌握计算器的基本使用方法是解题关键2、C【分析】根据方差的意义可作出判断方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定【详解】解:,成绩波动最小的班级是:丙班故选:C【点睛】此题主要考查了方差的意义,正确理解方差的意义是解题关键3、D【分析】首先求出丁同学的平均分和方差,然后比较平均数,平均数相同时选择方差较小的的同学参赛【详解】解:根据题意,丁同学的平均分为:,方差为:;丙同学和丁同学的平均分都是97分,但是丁同学的方差比较小,应该选择丁同学去参赛;
12、故选:D【点睛】本题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定4、A【分析】根据方差的意义求解即可【详解】解:S甲26,S乙224,S丙225.5,S丁236,S甲2S乙2S丙2S丁2,这四名学生的数学成绩最稳定的是甲,故选:A【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好掌握方差的意义是解题的关键5、D【分析】先根据平均数
13、定义求出x,再根据方差公式计算即可求解【详解】解:由题意得,解得x=6,这组数据的方差是故选:D【点睛】本题考查了平均数的定义和求一组数据的方差,熟知平均数的定义和方差公式是解题关键6、A【分析】分别计算出原数据和新数据的平均数和方差即可得【详解】解:原数据的平均数为=192.8,则原数据的方差为(189-192.8)2+(191-192.8)2+(193-192.8)2+(195-192.8)2+(196-192.8)2=4.512,新数据的平均数为=192,则新数据的方差为(189-192)2+(191-192)2+(193-192)2+(195-192)2+(192-192)2=4,所以
14、平均数变小,方差变小,故选:A【点睛】本题主要考查了方差和平均数,解题的关键是掌握方差的计算公式7、A【分析】根据方差的性质解答【详解】解:甲乙两人的方差分别是1.2,1.1,乙比甲稳定,故选:A【点睛】此题考查了方差的性质:方差越小越稳定8、B【分析】先计算出九年级(3)班的全体人数,然后用选择“5G时代”的人数除以九年级(3)班的全体人数即可【详解】由图知,九年级(3)班的全体人数为:25+30+10+20+15=100(人),选择“5G时代”的人数为:30人,选择“5G时代”的频率是:0.3;故选:B【点睛】本题考查了频数分布折线图,及相应频率的计算,熟知以上知识是解题的关键9、C【分析
15、】各组的频数的和就是总人数,再根据百分比、众数、中位数的定义逐一解题【详解】解:A. 该学校教职工总人数是4+6+11+10+9+6+4=50人,正确,故A不符合题意;B. 年龄在小组的教职工人数占总人数的20%,正确,故B不符合题意;C. 教职工年龄的中位数在这一组,某教师40岁,则全校恰有10名教职工比他年轻说法是错误的,故C符合题意;D. 教职工年龄分布最集中的在这一组,正确,故D不符合题意,故选:C【点睛】本题考查频数分布直方图,是重要考点,从图中获取正确信息是解题关键10、B【分析】根据题意和直方图中的数据可以求得质量在77.5kg及以上的生猪数,本题得以解决【详解】解:由直方图可得
16、,质量在77.5kg及以上的生猪:90+30+20=140(头),故选B【点睛】本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答二、填空题1、#【分析】先求出为非负数时所有整数的值,再求出其方差即可【详解】解:由题意可得,解得故的所有整数值为,0,1,2该组数的平均数为:方差为:故填【点睛】此题将分式的意义、二次根式成立的条件和方差相结合,考查了同学们的综合运用数学知识能力2、甲【分析】先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定【详解】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量
17、既高又稳定的枇杷树进行种植,则应选的品种是甲;故答案为:甲【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差方差是反映一组数据的波动大小的一个量方差越大,则与平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好也考查了平均数3、1.2【分析】首先求出平均数,然后根据方差的计算法则求出方差【详解】解:平均数, 数据的方差 ,故答案为 :1.2【点睛】本题主要考查了求方差,解题的关键在于能够熟练掌握求方差的方法4、2 2 【分析】依据平均数的定义:,计算即可得;再根据方差的定义: 列式计算可得【详解】解:这组数据的平均数,方差
18、,故答案为:2,2【点睛】本题主要考查了平均数,方差的计算,熟悉相关性质是解题的关键5、11 6 8 【分析】根据方差和平均数的变化规律可得:数据2x1+1、2x2+1、2x3+1、2x4+1、2x5+1的平均数是25+1,极差为23,方差是方差为222,再进行计算即可【详解】解:数据x1、x2、x3、x4、x5的平均数是5,极差为3,方差为2,新数据2x1+1、2x2+1、2x3+1、2x4+1、2x5+1的平均数是25+1=11,极差为23=6,方差为222=8,故答案为:11、6、8【点睛】此题考查了方差的特点,若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,
19、若数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变三、解答题1、(1)40,87,99;(2)七年级竞赛成绩较好,理由为:七年级的中位数高于八年级;(3)900人【分析】(1)根据八年级C等级有6个学生可得a,根据扇形统计图可得八年级中位数b,根据七年级的成绩可得众数c;(2)比较平均数、中位数和众数可得结论;(3)求出七、八年级学生竞赛成绩为D等级的百分比可得答案【详解】解:(1)八年级20名学生的竞赛成绩中C等级包含6个分数,C等级所占百分比为30%,a%120%10%30%40%,a40,八年级成绩A等级的有2020%=4(人),B等级的有2010%=2(人),八年级中
20、位数位于C等级的第4、5两个数据即86,88,八年级中位数位于C等级,b87,七年级成绩是众数是99分,c99,故答案为:40,87,99;(2)七年级竞赛成绩较好,理由为:七年级的中位数高于八年级;(3)七年级D等级人数是10人,八年级D等级人数是2040%8人,2000900(人),答:竞赛成绩为D等级的学生人数是900人【点睛】本题考查了扇形统计图、中位数、众数、平均数,理解中位数、众数、平均数的计算方法是正确求解的前提2、(1)甲组平均数为6.8,中位数为6,乙组方差为1.96;(2)见解析【分析】(1)由折线图中数据,根据中位数和加权平均数、方差的定义求解可得;(2)可从平均数和中位
21、数两方面阐述即可【详解】解:(1)由折线统计图可知,甲组成绩从小到大排列为:3、6、6、6、6、6、7、9、9、10,其平均数为=6.8,中位数为6,乙组成绩从小到大排列为:5、5、6、7、7、8、8、8、9、9,乙组学生成绩的方差为=2(5-7.2)2+(6-7.2)2+2(7-7.2)2+3(8-7.2)2+2(9-7.2)2=1.96;(2)因为乙组学生的平均分高于甲组学生,所以乙组学生的成绩好于甲组;因为乙组学生的中位数高于甲组学生,所以乙组学生的成绩好于甲组;所以乙组学生的成绩好于甲队组【点睛】本题主要考查折线统计图、加权平均数、中位数及方差,熟练掌握加权平均数、中位数及方差的定义是
22、解题的关键3、(1)7.3,5.5,7,1.41;(2)选甲公司,理由见解析【分析】(1)利用平均数、中位数、众数及方差的定义分别计算后即可确定正确的答案;(2)根据平均数,中位数及众数的大小和方差的大小进行选择即可【详解】解:(1)甲公司平均月收入:a5+6+74+82+910(110%10%40%20%)7.3(千元);乙公司滴滴中位数为b5.5(千元);甲公司众数c7(千元);甲公司方差:d4(77.3)2+2(87.3)2+2(97.3)2+(57.3)2+(67.3)21.41;故答案为:7.3,5.5,7,1.41;(2)选甲公司,因为甲公司平均数,中位数、众数大于乙公司,且甲公司
23、方差小,更稳定【点睛】本题主要考查中位数、众数、平均数及方差,熟练掌握求一组数据的中位数、众数、平均数及方差是解题的关键4、 (1) 120(名);(2) 补全统计图见详解(3)855(名)【分析】(1)结合扇形统计图D组百分比5%和条形统计图D组人数6名用除法求出全部学生数即可;(2) 利用(1)中的数据计算出C组的人数,在计算出A和B的百分比即可;(3)根据用样本B组的百分比为45%,估计总体中含有的数量,利用B组的百分比总人数计算出人数即可【详解】解:(1)抽样调查的学生人数为65%=120(名);(2)A的百分比:100%=30%,B的百分比:100%=45%,C组的人数:12020%
24、=24名; 补全统计图,如图所示:(3)对“节约教育”内容“了解较多”的有190045%=855(名)【点睛】本题考查的是条形统计图和扇形统计图的信息获取与处理,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小,用样本的百分比含量估计总体中的数量5、(1)7;7.5;4.2;(2)乙;(3)选择乙参加比赛,理由见解析【分析】(1)根据平均数公式计算甲,利用中位数先把以成绩从低到高排序,取中间两个成绩7、8的平均数,利用方差公式求c即可;(2)根据平均数两者均为7,乙的中位数7.5大于甲的中位数7,说明乙的
25、成绩好于甲,(3)甲乙平均数相同,乙的中位数7.5大于甲的中位数7,说明乙的成绩好于甲,从方差看乙的方差大于甲,只说明乙的成绩没有甲稳定,从折线图看,乙开始时发挥不好,后来乙的成绩呈上升趋势,乙队员要比甲队员参赛好【详解】解:(1)甲的平均成绩为乙的成绩从低到高排列为:3,4,6,7,7,8,8,8,9,10,所以中位数=4.2故答案为:7,7.5,4.2.(2)由表中数据可知,甲、乙平均成绩相等,乙的中位数7.5大于甲的中位数7,说明乙的成绩好于甲,故答案为:乙;(3)选择乙参加比赛,理由:从平均数上看,甲、乙平均成绩相等,总分相等,从中位数上看乙的中位数和众数都大于甲,说明乙的成绩好于甲,从方差上看乙的方差大于甲只说明乙的成绩没有甲稳定,从众数看乙的众数是8,甲的众数是7,说明乙成绩要好些,从折线图看,乙开始时发挥不好,后来乙的成绩呈上升趋势,故应选乙队员参赛【点睛】本题考查条形统计数,折线统计图,统计表获取信息以及处理信息,中位数,平均数,方差,利用集中趋势的量与离散程度的量进行决策是解题关键