《2021-2022学年度京改版八年级数学下册第十七章方差与频数分布难点解析试题(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度京改版八年级数学下册第十七章方差与频数分布难点解析试题(无超纲).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十七章方差与频数分布难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如表是某次射击比赛中10名选手的射击成绩(环):射击成绩(环)678910人数(人)12421关于这10名
2、选手的射击环数,下列说法不正确的是( )A众数是8B中位数是5C平均数是8D方差是1.22、已知一组数据8,6,10,10,13,11,8,10,12,12,9,8,7,12,9,11,9,10,11,10那么频率是0.2的一组数据的范围是( )ABCD3、体育老师让小明5分钟内共投篮50次,一共投进30个球,请问投进球的频率是( )A频率是0.5B频率是0.6C频率是0.3D频率是0.44、篮球队5名场上队员的身高(单位:cm)分别是:189,191,193,195,196现用一名身高为192cm的队员换下身高为196cm的队员,与换人前相比,场上队员的身高( )A平均数变小,方差变小B平均
3、数变小,方差变大C平均数变大,方差变小D平均数变大,方差变大5、为了解某社区居民的用电情况,随机对该社区15户居民进行调查,下表是这15户居民2020年4月份用电量的调查结果:关于这15户居民月用电量(单位:度),下列说法错误的是()居民(户)5334月用电量(度/户)30425051A平均数是43.25B众数是30C方差是82.4D中位数是426、若样本的平均数为10,方差为2,则对于样本,下列结论正确的是( )A平均数为30,方差为8B平均数为32,方差为8C平均数为32,方差为20D平均数为32,方差为187、在春季运动会中,有9名学生参加100米比赛,并且他们的最终成绩各不相同,若一名
4、学生想知道自己能否进入前5名,除了要了解自己的成绩外,还要了解这9名学生成绩的( )A众数B中位数C平均数D方差8、班级准备推选一名同学参加学校演讲比赛,在五轮班级预选赛中,甲、乙、丙三名同学五轮预选赛成绩的平均数和方差如下表所示:甲乙丙平均数/分969597方差0.422丁同学五轮预选赛的成绩依次为:97分、96分、98分、97分、97分,根据表中数据,要从甲、乙、丙、丁四名同学中选择一名成绩好又发挥稳定的同学参赛应该选择( )A甲B乙C丙D丁9、在一次投篮训练中,甲、乙、丙、丁四人各进行10次投篮,每人投篮成绩的平均数都是8,方差分别为S甲20.24,S乙20.42,S丙20.56,S丁2
5、0.75,成绩最稳定的是( )A甲B乙C丙D丁10、已知一组数据1,2,0,1,2,那么这组数据的方差是()A10B4C2D0.2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若式子的值为非负数,则满足条件的所有整数a的方差是_2、一个样本的方差,则样本容量是_,样本平均数是_3、已知有50个数据分别落在五个小组内,落在第一、二、三、五小组内的数据个数分别为2,8,15,15,则落在第四小组内的频率是_4、为了在甲、乙两位同学中选拔一人参加市电视台组织的成语听写大会,对他们的成语水平进行了10次跟踪测试分析两人的成绩发现:84, 83.2,13.2, 26.36,由此
6、学校决定让甲去参加比赛,理由是_5、甲、乙两射击运动员10次射击训练的平均成绩恰好都是8.5环,方差分别是,则在本次测试中,_运动员的成绩更稳定(填“甲”或“乙”)三、解答题(5小题,每小题10分,共计50分)1、甲、乙两名队员参加射击训练,将10次成绩分别制成如图所示的两个统计图:(1)根据以上信息,整理分析数据如表:平均成绩(环)众数(环)中位数方差甲7a7c乙78b4.2填空:a ,b ,c ;(2)根据以上数据分析,请你运用所学统计知识,任选两个角度评价甲、乙两名队员哪位队员的射击成绩更好2、某县教育局组织了一次经典诵读比赛,中学组有两队各10人的比赛成绩如下表:甲7897101091
7、01010乙10879810109109(1)甲队成绩的中位数是 分,乙队成绩的众数是 分;(2)计算乙队的平均成绩;(3)如果要从两个队中选择一对参加市级比赛,你认为安排哪个队更容易获奖3、重庆北关中学有甲,乙两个学生食堂,为了了解哪个食堂更受学生欢迎,学校开展了为期20天的的数据收集工作,统计初三年级每天中午分别到甲,乙食堂就餐的人数,现对收集到的数据进行整理、描述和分析(人数用x(人)表示,共分成四个等级,A:250x300;B:200x250;C:150x200;D:100x150),下面给出了部分信息:甲、乙食堂的人数统计表:食堂甲乙平均数211196中位数a215众数b230极差1
8、88c甲食堂20天的所有人数数据为:112,125,138,146,168,177,177,177,185,218,230,234,241,246,249,260,260,279,298,300乙食堂20天的人数数据中最少人数为120人,A等级的数据为278,290,260请根据相关信息,回答以下问题:(1)填空:a ,b ,c ,并补全乙食堂的人数数据条形统计图:(2)根据以上数据,请判断哪个食堂的更受同学们欢迎,并说明理由(一条即可);(3)已知该校初三年级共有学生400人,全校共有学生1600人,请估算北关中学甲食堂每天中午大约准备多少名同学的午餐?4、为引导学生知史爱党、知史爱国,某中
9、学组织全校学生进行“党史知识”竞赛,该校德育处随机抽取部分学生的竞赛成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格,并绘制成两幅不完整的统计图根据以上信息,解答下列问题:(1)德育处一共随机抽取了_名学生的竞赛成绩;在扇形统计图中,表示“一般”的扇形圆心角的度数为_;(2)将条形统计图补充完整;(3)该校共有1400名学生,估计该校大约有多少名学生在这次竞赛中成绩优秀?5、某市提出城市核心价值观:“包容、尚德、守法、诚信、卓越”某校德育处为了了解学生对城市核心价值观中哪一项内容最感兴趣,随机抽取了部分学生进行调查,并将调查结果绘成如图统计图请你结合图中信息解答下列问题:(1)该校共
10、调查了多少名学生;(2)补全条形统计图;(3)若该校共有2000名学生,估计对“卓越”最感兴趣的学生有多少人?-参考答案-一、单选题1、B【分析】根据众数、中位数、平均数及方差的定义逐一计算可得答案【详解】解:这组数据中8出现次数最多,即众数为8;其中位数是第5、6个数据的平均数,故其中位数为;平均数为,方差为,故选:B【点睛】本题主要考查方差等知识,解题的关键是掌握众数、中位数、平均数及方差的计算方法2、D【分析】首先知共有20个数据,根据公式:频数=频率总数,知要使其频率为0.2,其频数应为4,然后观察选项中哪组数据包含样本中的数据有4个即可求解【详解】解:这组数据共20个,要使其频率为0
11、.2,则频数为:200.2=4个,选项A中包含的数据有:6和7,其频数为2;选项B中包含的数据有:8,8,8,9,9,9,其频数为6;选项C中包含的数据有:10,10,10,10,10,11,11,11,其频数为8;选项D中包含的数据有:12,12,12,13,其频数为4,故选:D【点睛】本题考查了频数与频率的概率,掌握公式“频数=频率总数”是解决本题的关键3、B【分析】根据频率是指每个对象出现的次数与总次数的比值(或者百分比)即频率=频数总数可得答案【详解】解:小明进球的频率是3050=0.6,故选:B【点睛】此题主要考查了频率,关键是掌握计算方法4、A【分析】分别计算出原数据和新数据的平均
12、数和方差即可得【详解】解:原数据的平均数为=192.8,则原数据的方差为(189-192.8)2+(191-192.8)2+(193-192.8)2+(195-192.8)2+(196-192.8)2=4.512,新数据的平均数为=192,则新数据的方差为(189-192)2+(191-192)2+(193-192)2+(195-192)2+(192-192)2=4,所以平均数变小,方差变小,故选:A【点睛】本题主要考查了方差和平均数,解题的关键是掌握方差的计算公式5、A【分析】根据表格中的数据,求出平均数,中位数,众数,方差,即可做出判断【详解】解:15户居民2015年4月份用电量为30,3
13、0,30,30,30,42,42,42,50,50,50,51,51,51,51,平均数为(30+30+30+30+30+42+42+42+50+50+50+51+51+51+51)42,中位数为42;众数为30,方差为 5(3042)2+3(4242)2+3(5042)2+4(5142)282.4故B、C、D正确故选:A【点睛】本题考查的是平均数,中位数,众数,方差,熟练掌握平均数,中位数,众数,方差的定义是解题关键6、D【分析】由样本的平均数为10,方差为2,可得再利用平均数公式与方差公式计算的平均数与方差即可.【详解】解: 样本的平均数为10,方差为2, 故选D【点睛】本题考查的是平均数
14、,方差的含义与计算,熟练的运用平均数公式与方差公式进行推导是解本题的顾客.7、B【分析】根据众数、中位数、平均数及方差的意义知,只要知道了中位数即可知道自己能否进入前5名【详解】众数表示一组数据中出现次数最多的数,知道众数无法知道自己能否进入前5名;平均数表示的是一组数据的平均水平,方差反映的是一组数据的波动程度,它们都不能知道自己能否进入前5名,只有中位数,才能知道自己能否进入前5名,9名学生中,成绩按高低排列第5位学生的成绩是中位数,若该学生的成绩等于或高于中位数,则进入前5名,否则没有故选:B【点睛】本题考查了众数、中位数、平均数及方差这四个统计量,前三个反映的是数据的平均水平,后一个反
15、映的是数据的波动程度,理解这四个概念是关键8、D【分析】首先求出丁同学的平均分和方差,然后比较平均数,平均数相同时选择方差较小的的同学参赛【详解】解:根据题意,丁同学的平均分为:,方差为:;丙同学和丁同学的平均分都是97分,但是丁同学的方差比较小,应该选择丁同学去参赛;故选:D【点睛】本题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定9、A【分析】根据方差的意义,即可求解【详解】解:S甲20.24,S乙20.42,S丙20.56,S丁2
16、0.75成绩最稳定的是甲故选A【点睛】此题考查了方差的意义,方差反应一组数据的波动情况,方差越小数据越稳定,理解方差的意义是解题的关键10、C【分析】根据方差公式进行计算即可方差:一般地,各数据与平均数的差的平方的平均数叫做这组数据的方差【详解】1,2,0,1,2,这组数据的平均数为故选C【点睛】本题考查了求一组数据的方差,掌握方差的计算公式是解题的关键二、填空题1、#【分析】先求出为非负数时所有整数的值,再求出其方差即可【详解】解:由题意可得,解得故的所有整数值为,0,1,2该组数的平均数为:方差为:故填【点睛】此题将分式的意义、二次根式成立的条件和方差相结合,考查了同学们的综合运用数学知识
17、能力2、12 3 【分析】方差公式为 ,其中n是样本容量,表示平均数根据公式直接求解【详解】解:一个样本的方差是,该样本的容量是12,样本平均数是3故答案为:12,3【点睛】此题考查方差的定义,解题的关键是熟练运用方差公式,此题难度不大3、0.4【分析】先求出第四小组的频数,再根据频率=频数样本容量计算即可;【详解】由题可知:第四小组的频数,频率=频数样本容量;故答案是0.4【点睛】本题主要考查了频率和频数的计算,准确分析计算是解题的关键4、甲的平均成绩高,且甲的成绩较为稳定【分析】因为甲的平均数大于乙的平均数,再根据方差的意义可作出判断【详解】84, 83.2,13.2, 26.36, ,甲
18、的平均成绩高,且甲的成绩较为稳定;故答案为:甲的平均成绩高,且甲的成绩较为稳定【点睛】本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定5、甲【分析】先根据甲的方差比乙的方差小,再根据方差越大,波动就越大,数据越不稳定,方差越小,波动越小,数据越稳定即可得出答案【详解】解:,甲运动员比乙运动员的成绩稳定;故答案为:甲【点睛】本题考查了方差的意义,解题的关键是掌握方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越小
19、;反之,则它与其平均值的离散程度越小,稳定性越好三、解答题1、(1),;(2)答案见解析.【分析】(1)分别根据平均数,方差,中位数的定义求解即可;(2)从众数与中位数的角度分析,乙的射击成绩都比甲要高,从而可得结论.【详解】解:(1)由频数直方图可得:甲的成绩如下: 其中环出现了4次,所以众数是环,环 由折线统计图可得:按从小到大排序为: 所以中位数为:.故答案为:,;(2)从众数与中位数来看,乙的众数与中位数都比甲高,所以乙的射击成绩比甲的射击成绩要好一些.【点睛】本题考查的是平均数,众数,中位数,方差的含义,根据平均数,众数,中位数,方差下结论,掌握以上基础概念是解本题的关键.2、(1)
20、9.5,10;(2)9;(3)甲,乙的平均分均为9分,但是甲的方差为1.4,乙的方差为1,所以乙队的成绩更加稳定,选择乙【分析】(1)先将甲队的成绩按从小到大的顺序排列,可得位于第5位和第6位的分别为9和10 ,可得甲队成绩的中位数是9.5分,再由乙队成绩中10出现的次数最多,可得乙队成绩的众数是10分;(2)利用乙队成绩的总和除以10,即可求解;(3)分别两队的平均成绩和方差,即可求解【详解】解:(1)将甲队的成绩按从小到大的顺序排列为:7、7、8、9、9、10、10、10、10、10,位于第5位和第6位的分别为9和10 ,甲队成绩的中位数是 分,乙队成绩中10出现了4次,出现的次数最多,乙
21、队成绩的众数是10分;(2)乙队的平均成绩为 分;(3)甲队的平均成绩为 分,甲队成绩的方差为乙队成绩的方差为,甲,乙的平均分均为9分,但是甲的方差为1.4,乙的方差为1,乙队的成绩更加稳定,选择乙【点睛】本题主要考查了求一组数据的中位数,众数,平均数,利用方差做决策,熟练掌握一组数据中位于正中间的一个数或两个数的平均数是中位数;出现次数最多的数是众数;平均数等于数据的总和除以个数;方差越小,越稳定是解题的关键3、(1)224,177,170,补全条形统计图见解析;(2)甲食堂较好,理由见解析;(3)甲食堂每天中午大约准备844名同学的午餐【分析】(1)利用中位数,众数,极差的定义分别求解,求
22、出乙食堂的“B组”的频数才能补全频数分布直方图;(2)从平均数的角度比较得出结论;(3)用样本估算总体即可【详解】解:(1)甲食堂20天的所有人数中位数是第10、11个数据,a=224,177人的有3天,天数最多,b=177,乙食堂20天的人数数据中最少人数为120人,A等级的数据为278,290,260,c=290-120=170;20-3-7-4=6,补全乙食堂的人数数据条形统计图如图:故答案为:224,177,170;(2)甲食堂较好,理由:甲食堂就餐人数的平均数比乙食堂的高;(3)1600=844(名),故北关中学甲食堂每天中午大约准备844名同学的午餐【点睛】本题考查中位数、众数、极
23、差以及频数分布直方图,理解中位数、众数、极差的意义,掌握频数分布直方图的意义是正确解答的关键4、(1)40,108;(2)见解析;(3)估计该校大约有350名学生在这次竞赛中成绩优秀【分析】(1)由成绩“良好”的学生人数除以所占百分比求出德育处一共随机抽取的学生人数,即可解决问题;(2)把条形统计图补充完整即可;(3)由该校共有学生人数乘以在这次竞赛中成绩优秀的学生所占的比例即可【详解】解:(1)德育处一共随机抽取的学生人数为:1640%=40(名),则在条形统计图中,成绩“一般”的学生人数为:40-10-16-2=12(名),在扇形统计图中,成绩“一般”的扇形圆心角的度数为:360=108,
24、故答案为:40,108;(2)把条形统计图补充完整如下:(3)1400=350(名),即估计该校大约有350名学生在这次竞赛中成绩优秀【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小5、(1)500人;(2)见解析;(3)300人【分析】(1)用最感兴趣为“包容”的人数除以它所占的百分比即可得到调查学生的总数;(2)用总人数分别减去其他各项的人数得到最感兴趣为“尚德”的人数为100名;(3)用最感兴趣为“卓越”所占百分比乘以2000即可【详解】解:(1)15030%500(名),该校共调查了500名学生;(2)最感兴趣为“尚德”的人数5001505012575100(名),补全图形如图:(3)最感兴趣为“卓越”所占百分比100%15%,200015%300(名)所以该校共有2000名学生,估计全校对“卓越”最感兴趣的人数为300名【点睛】本题考查了条形统计图和扇形统计图的综合,条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较也考查了样本估计总体