《2021-2022学年京改版八年级数学下册第十四章一次函数章节训练试题(含答案及详细解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年京改版八年级数学下册第十四章一次函数章节训练试题(含答案及详细解析).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十四章一次函数章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一次函数的图象经过点,则下列结论正确的是( )A图像经过一、二、三象限B关于方程的解是CD随的增大而减小2
2、、已知点A(x,5)在第二象限,则点B(x,5)在( )A第一象限B第二象限C第三象限D第四象限3、关于函数有下列结论,其中正确的是( )A图象经过点B若、在图象上,则C当时,D图象向上平移1个单位长度得解析式为4、一次函数的一般形式是(k,b是常数)( )Ay=kx+bBy=kxCy=kx+b(k0)Dy=x5、在函数y=中,自变量x的取值范围是()Ax3Bx3Cx4Dx3且x46、已知点(1,y1)、(2,y2)在函数y2x+1图象上,则y1与y2的大小关系是( )Ay1y2By1y2Cy1=y2D无法确定7、已知一次函数yaxb(a0)的图象经过点(0,1)和(1,3),则ba的值为(
3、)A1B0C1D28、下面关于函数的三种表示方法叙述错误的是( )A用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化B用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值C用解析式法表示函数关系,可以方便地计算函数值D任何函数关系都可以用上述三种方法来表示9、已知为第四象限内的点,则一次函数的图象大致是( )ABCD10、点在( )A第一象限B第二象限C第三象限D第四象限第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知函数y,那么自变量x的取值范围是_2、已知一次函数的图象经过点和,则_(填“”“”或“”)3、如图,在平面直角坐标系中,直
4、线交y轴于点A(0,2),交x轴于点B,直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上且在第一象限一动点若是等腰三角形,点P的坐标是_4、某通讯公司推出了两种收费方式,收费y1,y2(元)与通讯时间x(分钟)之间的函数关系如图所示,若使用资费更加划算,通讯时间x(分钟)的取值范围是_5、(1)一次函数y=kx+b(k0)的图象经过点(0,b)当k0时,y的值随着x值的增大而_;当k0时,y的值随着x值的增大而增大;当k0时,y的值随着x值的增大而减小;(2)由正比例函数概念可知:把形如y=kx(k是常数,k0)的函数,叫做正比例函数,其中比例系数是k故答案为:增大 减小 y=kx
5、 k【点睛】本题考查了正比例概念和一次函数的性质,做题的关键是牢记正比例和一次函数的概念准确填写三、解答题1、(1)C(3,1),yx+2;(2)见解析;(3)存在,点N(,0)或(,0)【解析】【分析】(1)过点C作CHx轴于点H,根据直线y2x+2与y轴,x轴分别交于A,B两点,可得点A、B的坐标分别为:(0,2)、(1,0),再证得CHBBOA,可得BHOA2,CHOB,即可求解;(2)过点C作CHx轴于点H,DFx轴于点F,DGy轴于点G,可先证明BCHBDF,得到BF=BH,再由B(-1,0),C(3,1),可得到OF=OB=1,从而得到 DG=OB=1,进而证得BOEDGE,即可求
6、证;(3)先求出直线BC的表达式为,可得k ,再求出点M(6,0),从而得到SBMC,SBPN,即可求解【详解】解:(1)过点C作CHx轴于点H,令x0,则y2,令y0,则x2,则点A、B的坐标分别为:(0,2)、(1,0),HCB+CBH90,CBH+ABO90,ABOBCH,CHBBOA90,BCBA,CHBBOA(AAS),BHOA2,CHOB,则点C(3,1),设直线AC的表达式为ymx+b ,将点A、C的坐标代入一次函数表达式:ymx+b得:,解得:,故直线AC的表达式为:yx+2;(2)如图,过点C作CHx轴于点H,DFx轴于点F,DGy轴于点G,AC=AD,ABCB,BC=BD,
7、CBH=FBD,BCHBDF,BF=BH,C(3,1),OH=3,B(-1,0),OB=1, BF=BH=2,OF=OB=1,DG=OB=1, OEB=DEG,BOEDGE,BE=DE;(3)设直线BC的解析式为 ,把点C(3,1),B(1,0),代入,得: ,解得: ,直线BC的表达式为:,将点P坐标代入直线BC的表达式得:k ,直线AC的表达式为:yx+2,点M(6,0),SBMCMByC51,SBPNSBCMNBNB,解得:NB,故点N(,0)或(,0)【点睛】本题主要考查了求一次函数解析式,等腰三角形的性质,一次函数的性质和图象,熟练掌握利用待定系数法求一次函数解析式,等腰三角形的性质
8、,一次函数的性质和图象是解题的关键2、(1);(2)点的坐标;(3)点的坐标为或,或【解析】【分析】(1)当时,即点的坐标为,将点的坐标代入直线得:,解得:,即可求解;(2)确定点的对称点、点的对称点,连接,此时,的值最小,即可求解;(3)当点在直线上方,画出图形,证明,利用,即可求解当点在直线下方时,同的方法即可得出结论如图2中,当点在轴的右侧,是等腰直角三角形时,同法可得结论【详解】解:(1)当时,即点的坐标为,将点的坐标代入直线得:,解得:,故:直线的解析式为:;(2)确定点关于过点垂线的对称点、点关于轴的对称点,连接交过点的垂线与点,交轴于点,此时,的值最小,如图所示:将点、点的坐标代
9、入一次函数表达式:得:,解得:,则直线的表达式为:,当时,即点的坐标为,的值,即:当的值最小为时,此时点的坐标;(3)将、点坐标代入一次函数表达式,同理可得其表达式为当点在直线上方时,设点,点,点,过点、分别作轴的平行线交过点与轴的平行线分别交于点、,即,解得故点的坐标为,当点在下方时,如图1,过点作轴,与过点作轴的平行线交于,与过点作轴的平行线交于,同的方法得,如图2中,当点在轴的右侧,是等腰直角三角形时,同法可得即:点的坐标为,或,【点睛】本题考查的是一次函数的综合运用,涉及到三角形全等、轴对称的性质等知识点,其中(2)中,通过画图确定点、的位置是本题的难点3、(1)y=x,y=12x+5
10、2;(2)7.5【解析】【分析】(1)根据A的坐标先求出正比例函数的解析式,再根据已知条件求出点B的坐标,进而可得一次函数解析式;(2)由A点坐标可求得A到y轴的距离,根据三角形面积公式可求得S【详解】解:(1)A(3,4),OA=32+42=5,OB= OA=5 B(-5,0)设正比例函数的解析式为y=mx,正比例函数的图象过A(3,4)4=3m,m=,正比例函数的解析式为y=x;设一次函数的解析式为y=kx+b,过A(3,4)、B(-5,0)3k+b=4-5k+b=0解得:k=12b=52一次函数的解析式为y=12x+52;(2)A(3,4),B(-5,0),三角形AOB的面积为53=7.
11、5【点睛】主要考查了用待定系数法解函数解析式和一次函数图象的性质,还考查了学生的分析能力和读图能力4、(1)王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;s=0.3t-2.5;(2)t=7.5【解析】【分析】(1)根据待定系数法求解析式设王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;s=mt+n,函数过点(15,2)(30,6.5)代入得方程组15m+n=230m+n=6.5,然后解方程组即可;(2)利用待定系数法求正比例函数解析式,再根据函数值解方程即可【详解】解:(1)设王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;s=mt+n函数过点(15
12、,2)(30,6.5)代入得:15m+n=230m+n=6.5,解得:m=0.3n=-2.5,王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;s=0.3t-2.5;(2)设修车之前解析式为s=kt,代入(10,2)得:2=10k,解得k=15,s=15t,当s=1.5时,15t=1.5,解得t=7.5分【点睛】本题考查一次函数的应用,从函数图像获取信息与信息处理,待定系数法求解析式,解一元一次方程,二元一次方程组,掌握从函数图像获取信息与信息处理,待定系数法求解析式,解一元一次方程,二元一次方程组是解题关键5、(1)y=34x,y=2x-5;(2)SAOB=10【解析】【分析】(1)由点A的坐标及勾股定理即可求得OA与OB的长,从而可得点B的坐标,用待定系数法即可求得函数的解析式;(2)由点A的坐标及OB的长度即可求得AOB的面积【详解】A(4,3)OAOB32+425,B(0,5),设直线OA的解析式为ykx,则4k3,k,直线OA的解析式为y=34x,设直线AB的解析式为ykxb,把A、B两点的坐标分别代入得:4k+b=3b=-5,k=2b=-5,直线AB的解析式为y2x5(2)SAOB125410【点睛】本题考查了待定系数法求一次函数的解析式,直线与坐标轴围成的三角形面积等知识,本题重点是求一次函数的解析式