《2022年必考点解析沪科版九年级数学下册第24章圆同步测评练习题(精选).docx》由会员分享,可在线阅读,更多相关《2022年必考点解析沪科版九年级数学下册第24章圆同步测评练习题(精选).docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第24章圆同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的个数有( )方程的两个实数根的和等于1;半圆是弧;正八边形是中心对称图形;“抛掷3枚质地均匀的硬币全部正
2、面朝上”是随机事件;如果反比例函数的图象经过点,则这个函数图象位于第二、四象限A2个B3个C4个D5个2、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为( )A30B60C90D1203、下面的图形中既是轴对称图形又是中心对称图形的是( )ABCD4、下列四个图案中,是中心对称图形但不是轴对称图形的是( )ABCD5、下列各点中,关于原点对称的两个点是()A(5,0)与(0,5)B(0,2)与(2,0)C(2,1)与(2,1)D(2,1)与(2,1)6、如图,在中,将绕点A顺时针旋转60得到,此时点B的对应点D恰好落在BC边上,则CD的长为
3、( )A1B2C3D47、如图,ABCD是正方形,CDE绕点C逆时针方向旋转90后能与CBF重合,那么CEF是()A.等腰三角形B等边三角形C.直角三角形D.等腰直角三角形8、下列图形中,既是中心对称图形也是轴对称图形的是( )ABCD9、如图,点P是等边三角形ABC内一点,且PA3,PB4,PC5,则APB的度数是( )A90B100C120D15010、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是( )A直径所对圆周角为B如果点在圆上,那么点到圆心的距离等于半径C直径是最长的弦D垂直于弦的直径平分这条弦第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)
4、1、一块直角三角板的30角的顶点A落在上,两边分别交于B、C两点,若弦BC长为4,则的半径为_2、如图,O的半径为5cm,正六边形ABCDEF内接于O,则图中阴影部分的面积为 _3、如图,PM,PN分别与O相切于A,B两点,C为O上异于A,B的一点,连接AC,BC若P58,则ACB的大小是_4、如图,在平行四边形中,以点为圆心,为半径的圆弧交于点,连接,则图中黑色阴影部分的面积为_(结果保留)5、在平面直角坐标系中,点,圆C与x轴相切于点A,过A作一条直线与圆交于A,B两点,AB中点为M,则OM的最大值为_三、解答题(5小题,每小题10分,共计50分)1、如图1,在中,将边绕着点A逆时针旋转,
5、得到线段,连接交边于点E,过点C作于点F,延长交于点G(1)求证:;(2)如图2,当时,求证:;(3)如图3,当时,请直接写出的值2、如图,是的直径,弦,垂足为E,弦与弦相交于点G,且,过点C作的垂线交的延长线于点H(1)判断与的位置关系并说明理由;(2)若,求弧的长3、如图,A,P,B,C是O上的四点,APCCPB60(1)判断ABC的形状,并证明你的结论;(2)求证:PAPBPC4、综合与实践“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的人们根据实际需要,发明了一种简易操作工具三分角器图1是它的示意图,其中与半圆的直径在同一直线上,且的长度与半圆的半径
6、相等;与垂直于点,足够长使用方法如图2所示,若要把三等分,只需适当放置三分角器,使经过的顶点,点落在边上,半圆与另一边恰好相切,切点为,则,就把三等分了为了说明这一方法的正确性,需要对其进行证明独立思考:(1)如下给出了不完整的“已知”和“求证”,请补充完整已知:如图2,点,在同一直线上,垂足为点,_,切半圆于求证:_探究解决:(2)请完成证明过程应用实践:(3)若半圆的直径为,求的长度5、已知:如图,正方形的边长为1,在射线AB上取一点E,联结DE,将ADE绕点D针旋转90,E点落在点F处,联结EF,与对角线BD所在的直线交于点M,与射线DC交于点N求证:(1)当时,求的值;(2)当点E在线
7、段AB上,如果,求y关于x的函数解析式,并写出定义域;(3)联结AM,直线AM与直线BC交于点G,当时,求AE的值-参考答案-一、单选题1、B【分析】根据所学知识对五个命题进行判断即可【详解】1、=12-41=-30,故方程无实数根,故本命题错误;2、圆上任意两点间的部分叫做圆弧,半圆也是,故本命题正确;3、八边形绕中心旋转180以后仍然与原图重合,故本命题正确;4、抛硬币无论抛多少,出现正反面朝上都是随机事件,故抛三枚硬币全部正面朝上也是随机事件,故本命题正确;5、反比例函数的图象经过点 (1,2) ,则,它的函数图像位于一三象限,故本命题错误综上所述,正确个数为3故选B【点睛】本题考查一元
8、二次函数判别式、弧的定义、中心对称图形判断、随机事件理解、反比例函数图像,掌握这些是本题关键2、B【分析】由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360进行分析即可得出答案.【详解】解:因为每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360,所以每次旋转相同角度 .故选:B.【点睛】本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数3、A【详解】解:A、既是轴对称图形又是中心对称图形,此项符合题意;B、是中心对称图形,不是轴对称图形,此项不符题意;C、是轴对称图形,不是中心对称图形,此项不符题意;D、是轴对称图形,不是中心对称图形,
9、此项不符题意;故选:A【点睛】本题考查了中心对称图形和轴对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键4、D【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项符合题意;故选:D【点
10、睛】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合5、D【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案【详解】解:A、(5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A错误;B、(0,2)与(2,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B错误;C、(2,1)与(2,1)关于x轴对称,故C错误;D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;故选:D【
11、点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数6、B【分析】由题意以及旋转的性质可得为等边三角形,则BD=2,故CD=BC-BD=2【详解】由题意以及旋转的性质知AD=AB,BAD=60ADB=ABDADB+ABD+BAD=180ADB=ABD=60故为等边三角形,即AB= AD =BD=2则CD=BC-BD=4-2=2故选:B【点睛】本题考查了等边三角形的判定及性质,等边三角形的三边都相等,三个内角都相等,并且每一个内角都等于,等边三角形判定的方法有:三边相等的三角形是等边三角形(定义);三个内角都相等的三角形是等边三角形;有一个内角是60度的等
12、腰三角形是等边三角形;两个内角为60度的三角形是等边三角形7、D【分析】根据旋转的性质推出相等的边CECF,旋转角推出ECF90,即可得到CEF为等腰直角三角形【详解】解:CDE绕点C逆时针方向旋转90后能与CBF重合,ECF90,CECF,CEF是等腰直角三角形,故选:D【点睛】本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键8、A【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是中心对称图形,不是轴对称图形,故此选项不符合题意;D、是中心对称
13、图形,不是轴对称图形,故此选项不符合题意故选:A【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合9、D【分析】将绕点逆时针旋转得,根据旋转的性质得,则为等边三角形,得到,在中,根据勾股定理的逆定理可得到为直角三角形,且,即可得到的度数【详解】解:为等边三角形,可将绕点逆时针旋转得,如图,连接,为等边三角形,在中,为直角三角形,且,故选:D【点睛】本题考查了旋转的性质、等边三角形,解题的关键是掌握旋转前后的两个图形全等,对应点与旋转中心的连线段的
14、夹角等于旋转角,对应点到旋转中心的距离相等10、A【分析】定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.【详解】A选项,直径所在的圆心角是180,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;B、C选项,根据圆的定义可以得到;D选项,是垂径定理;故选:A【点睛】本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.二、填空题1、4【分析】连接OB、OC,由题意易得BOC=60,则有BOC是等边三角形,然后问题可求解【详解】连接OB、OC,如图所示:A=30,BOC=60,OB=OC,BOC是等边三角形,即O的半径为4故答案为:4【点睛】本题主要考查圆
15、周角定理,熟练掌握圆周角定理是解题的关键2、【分析】根据图形分析可得求阴影部分面积实为求扇形面积,将原图阴影部分面积转化为扇形面积求解即可【详解】如图,连接BO,OC,OA,由题意得:BOC,AOB都是等边三角形,AOBOBC60,OABC,故答案为:【点睛】本题考查正多边形与圆、扇形的面积公式、平行线的性质等知识,解题的关键是得出3、或【分析】如图,连接利用切线的性质结合四边形的内角和定理求解再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.【详解】解:如图,连接 (即)分别在优弧与劣弧上, PM,PN分别与O相切于A,B两点, 故答案为:或【点睛】本题考查的是切线的性质定理,
16、圆周角定理的应用,圆的内接四边形的性质,四边形的内角和定理的应用,求解是解本题的关键.4、【分析】过点C作于点H,根据正弦定义解得CH的长,再由扇形面积公式、三角形的面积公式解题即可【详解】解:过点C作于点H,在平行四边形中,平行四边形的面积为:,图中黑色阴影部分的面积为:,故答案为:【点睛】本题考查平行四边形的性质、扇形面积等知识,是基础考点,掌握相关知识是解题关键5、#【分析】如图所示,取D(-2,0),连接BD,连接CD与圆C交于点,先求出A点坐标,从而可证OM是ABD的中位线,得到,则当BD最小时,OM也最小,即当B运动到时,BD有最小值,由此求解即可【详解】解:如图所示,取D(-2,
17、0),连接BD,连接CD与圆C交于点点C的坐标为(2,2),圆C与x轴相切于点A,点A的坐标为(2,0),OA=OD=2,即O是AD的中点,又M是AB的中点, OM是ABD的中位线,当BD最小时,OM也最小,当B运动到时,BD有最小值,C(2,2),D(-2,0),故答案为:【点睛】本题主要考查了坐标与图形,一点到圆上一点的距离得到最小值,两点距离公式,三角形中位线定理,把求出OM的最小值转换成求BD的最小值是解题的关键三、解答题1、(1)见解析(2)见解析(3)【分析】(1)由旋转的性质得AB=AD,所以,再根据三角形内角和定理可证明即可得到结论;(2)连接,根据ASA证明得,是等边三角形,
18、从而得出,再运用AAS证明得,由勾股定理可得出,从而 可得结论;(3)证明平分,作于点,根据勾股定理得,代入求值即可(1)边绕着点逆时针旋转得到线段, 又,且AEB=CEF(2)连接在和中,(ASA),即在和中,(AAS),在中,即,是等边三角形(3),平分作于点,在中,在中,【点睛】本题属于几何变换综合题,考查了旋转变换,等腰直角三角形的性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形2、(1)相切,见解析(2)【分析】(1)连接OC、OD、AC,OC交AF于点M,根据AGCG,CDAB,可得,从而OCAF,再由AFB90,可得CHAF,即可求证;(2)先证明
19、四边形CMFH为矩形,可得OCAF,CMHF2,从而得到AMFM,进而得到OMBF2,可得到CMOM,进而得到 OC=4,AM垂直平分OC,可证得AOC为等边三角形,即可求解(1)解: CH与O相切理由如下:如图,连接OC、OD、AC,OC交AF于点M, AGCG,ACGCAG,CDAB,OCAF,AB为直径,AFB90,BHCH,CHAF,OCCH,OC为半径,CH为O的切线;(2)解:由(1)得:BHCH,OCCH,OCBH,CHAF,四边形CMFH为平行四边形,OCCH,OCH=90,四边形CMFH为矩形,OCAF,CMHF2,AMFM,点O为AB的中点,OMBF2,CM=OM,OC=4
20、,AM垂直平分OC,ACAO,而AOOC,ACOCOA,,AOC为等边三角形,AOC60,AODAOC60,COD120,弧CD的长度为【点睛】本题主要考查了圆的基本性质,垂径定理,切线的判定,等边三角形的判定和性质,熟练掌握相关知识点是解题的关键3、(1)ABC是等边三角形,证明见解析;(2)见解析【分析】(1)利用圆周角定理可得BAC=CPB,ABC=APC,而APC=CPB=60,所以BAC=ABC=60,从而可判断ABC的形状;(2)如图所示,在PC取一点E使得AE=AP,先证明APE是等边三角形,得到AP=PE,AEP=60,可以推出AEC=APB,然后证明APBAEC得到BP=CE
21、,即可证明PC=PE+CE=AP+BP【详解】解:(1)ABC是等边三角形证明如下:由圆周角定理:BAC=CPB,ABC=APCAPCCPB60,BACABC60,ACB180BACABC180606060ABC是等边三角形(2)如图所示,在PC取一点E使得AE=AP,APE=60,AP=AE,APE是等边三角形,AP=PE,AEP=60,AEC=120,又APCCPB60,APB=120,AEC=APB,ABC是等边三角形,AB=AC,又ABP=ACE,APBAEC(AAS),BP=CE,PC=PE+CE=AP+BP【点睛】本题考查了圆周角定理、等边三角形的性质与判定,全等三角形的性质与判定
22、,解题的关键是掌握圆周角定理,正确求出ABC=BAC=604、(1),将三等分;(2)见解析;(3)【分析】(1)根据题意即可得;(2)先证明与全等,然后根据全等的性质可得,再由圆的切线的性质可得,可得三个角相等,即可证明结论;(3)连,延长与相交于点,由(2)结论可得,再由切线的性质,然后利用勾股定理及线段间的数量关系可得,最后利用相似三角形的判定和性质求解即可得【详解】解:(1),将三等分,故答案为:;,将三等分,(2)证明:在与中,是的切线、都是的切线,将三等分(3)如图,连,延长与相交于点,由(2),知是的切线,半径,由勾股定理得,在中,即,【点睛】题目主要考查全等三角形的判定和性质,
23、相似三角形的判定和性质,圆的切线的性质,勾股定理等,理解题意,结合图形综合运用这些知识点是解题关键5、(1);(2),0x1;(3)AE的值为或【分析】(1)过点E作EHBD与H,根据正方形的边长为1,求出EB=1-,根据正方形性质可求ABD=45,根据EHBD,得出BEH=180-EBH-EHB=180-45-90=45,求出EH=BH=BEsin45=,以及 DH=DB-BH=,利用三角函数定义求解即可;(2)解:根据AE=x,求出BE=1-x,根据旋转将ADE绕点D针旋转90,得到DCF,CF=AE=x,根据勾股定理ED=FD=,EF=,可证DEF为等腰直角三角形,先证BEMFDM,得出
24、,再证EMDBMF,得出,两式相乘得出,整理即可;(3)当点G在BC上,先证BGMDAM,得出,由(2)知BEMFDM,得出,得出,结合,消去y, 当点G在CB延长线上,过M作MLBC,交直线BC于L,证明BGMDAM,得出,根据LBM=CBD=45,MLBC,证出MLB为等腰直角三角形,再证MLBDCB,CD=1,ML=,MLBE,结合LMFBEF,得出即解方程即可(1)解:过点E作EHBD与H,正方形的边长为1,EB=1-,BD为正方形对角线,BD平分ABC,ABD=45,EHBD,BEH=180-EBH-EHB=180-45-90=45,EH=BH,EH=BH=BEsin45=,AB=B
25、Dcos45,DH=DB-BH=,;(2)解:如上图,AE=x,BE=1-x,将ADE绕点D针旋转90,得到DCF,CF=AE=x,ED=FD=,BF=BC+CF=1+x,在RtEBF中EF=,EDF=90,ED=FD,DEF为等腰直角三角形,DFE=DEF=45,EBM=MFD=45,EMB=DMF,BEMFDM,即,DEM=FBM=45,EMD=BMF,EMDBMF,即,即,0x1;(3)解:当点G在BC上,四边形ABCD为正方形,ADBG,DAM=BGM,ADM=GBM,BGMDAM,由(2)知BEMFDM,DB=,即,解,舍去;当点G在CB延长线上,过M作MLBC,交直线BC于L,GBAD,DAM=BGM,ADM=GBM,BGMDAM,LBM=CBD=45,MLBC,MLB为等腰直角三角形,MLCD,LMB=CDB,L=DCB,MLBDCB,CD=1,ML=MLBE,L=FBE,LMF=BEF,LMFBEF,BE=AE-AB=x-1,LF=LB+BC+CF=,BF=BC+CF=1+x,整理得:,解得,舍去,AE的值为或【点睛】本题考查正方形性质,图形旋转先证,等腰直角三角形判定与性质,锐角三角函数定义,三角形相似判定与性质,勾股定理,解一元二次方程,函数关系式,本题难度大,利用辅助线狗仔三角形相似是解题关键