《高中数学选修2-3人教A教案导学案3.1.1回归分析的基本思想及其初步应用.doc》由会员分享,可在线阅读,更多相关《高中数学选修2-3人教A教案导学案3.1.1回归分析的基本思想及其初步应用.doc(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、3 1.1回归分析的基本思想及其初步应用【教学目标】1.了解回归分析的基本思想方法及其简单应用.2.会解释解释变量和预报变量的关系.【教学重难点】教学重点:回归分析的应用.教学难点:、公式的推到.【教学过程】一、 设置情境,引入课题引入:对于一组具有线性相关关系的数据其回归直线方程的截距和斜率的最小二乘法估计公式分别为: 称为样本点的中心。如何推到着两个计算公式?二、 引导探究,推出公式从已经学过的知识,截距和斜率分别是使取最小值时的值,由于因为所以在上式中,后两项和无关,而前两项为非负数,因此要使Q取得最小值,当且仅当前两项的值均为0.,既有 通过上式推导,可以训练学生的计算能力,观察分析能
2、力,能够很好训练学生数学能力,必须在老师引导下让学生自己推出。所以: 三、 例题应用,剖析回归基本思想与方法例1、 从某大学中随机选取8名女大学生,其身高和体重的数据如图所示:编号12345 678身高/cm165165157170175165155170体重/kg4857505464614359(1) 画出以身高为自变量x,体重为因变量y的散点图(2) 求根据女大学生的身高预报体重的回归方程(3) 求预报一名身高为172cm的女大学生的体重解:(1)由于问题中要求根据身高预报体重,因此选取身高为自变量x,体重为因变量y作散点图(2)(3)对于身高172cm的女大学生,由回归方程可以预报体重为
3、:四、 当堂练习观察两相关变量得如下数据x1234553421y9753115379求两个变量的回归方程.答:所以所求回归直线方程为五、 课堂小结1. 、公式的推到过程。2六、布置作业课本90页习题131.1回归分析的基本思想及其初步应用课前预习学案一、 预习目标通过截距与斜率分别是使取最小值时,求的值。二、预习内容:1. 对于一组具有线性相关关系的数据其回归直线方程的截距和斜率的最小二乘法估计公式:= ,= 2= , = 3样本点的中心 三、提出问题如何使 值最小,通过观察分析式子进行试探推到课内探究学案一、 学习目标1. 了解回归分析的基本思想和方法2. 培养学生观察分析计算的能力二、学习
4、重难点学习重点:回归方程,学习难点:、公式的推到三、学习过程1使值最小时,值的推到2结论 3中和的含义是什么4. 一定通过回归方程吗?四、典型例题例1研究某灌溉倒水的流速y与水深x之间的关系,测得一组数据如下:水深x(m)1.401.501.601.701.801.902.002.10流速y(m/s)1.701.791.881.952.032.102.162.21(1) 求y与x的回归直线方程;(2) 预测水深为1.95m时水的流速是多少?分析:(1)y与x的回归直线方程为(2)当水深为1.95m时,可以预测水的流速约为2.12m/s五、当堂练习1.对两个变量y和x进行回归分析,得到一组样本数
5、据:则下列说法不正确的是( )A.由样本数据得到的回归方程必过样本中心B.残差平方和越小的模型,拟合的效果越好C.用相关指数来刻画回归效果,越小,说明模型的拟合效果越好D若变量y与x之间的相关系数,则变量y与x之间具有线性相关关系2.已知某地每单位面积菜地年平均使用氮肥量xkg与每单位面积蔬菜年平均产量yt之间的关系有如下数据:年份19851986198719881989199019911992x(kg)7074807885929095y(t)5.16.06.87.89.010.210.012.0年份1993199419951996199719981999x(kg)92108115123130
6、138145y(t)11.511.011.812.212.512.813.0若x与y之间线性相关,求蔬菜年平均产量y与使用氮肥量x之间的回归直线方程,并估计每单位面积蔬菜的年平均产量.(已知)解:设所求的回归直线方程为,则 所以,回归直线方程为:当x=150kg时,每单位面积蔬菜的年平均产量 课后练习与提高1、 下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:x3456y2.5344.5(1) 请画出上表数据的散点图;(2) 请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;(3) 已知该厂技改前100吨甲产品的生产能
7、耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:)解:(1)由题设所给数据,可得散点图如下图(2)由对照数据,计算得:已知所以,由最小二乘法确定的回归方程的系数为: 因此,所求的线性回归方程为(4) 由(2)的回归方程及技改前生产100吨甲产品的生产能耗,得降低的生产能耗为(吨标准煤)。31.2 回归分析的基本思想及其初步应用回归分析的基本思想及其初步应用【教学目标】1.了解相关系数r;2 了解随机误差;3 会简单应用残差分析【教学重难点】教学重点:相关系数和随机误差教学难点:残差分析应用。【教学过程】一、 设置情境,引入
8、课题上节例题中,身高172cm女大学生,体重一定是60kg吗?如果不是,其原因是什么?二、 引导探究,发现问题,解决问题1 对于是斜率的估计值,说明身高x每增加1个单位,体重就 ,表明体重与身高具有 的线性相关关系。2 如何描述线性相关关系的强弱?(1)r0表明两个变量正相关;(2)r0.D(e)越小,预报真实值y的精度越高。随机误差是引起预报值与真实值y之间的误差之一。为截距和斜率的估计值,与a,b的真实值之间存在误差,这种误差也引起与真实值y之间的误差之一。4 思考产生随机误差项e的原因是什么?5 探究在线性回归模型中,e是用预报真实值y的误差,它是一个不可观测的量,那么应该怎样研究随机误
9、差?如何衡量预报的精度?来衡量随机误差的大小。 称为残差平方和,越小,预报精度越高。6 思考当样本容量为1或2时,残差平方和是多少?用这样的样本建立的线性回归方程的预报误差为0吗?7 残差分析判断原始数据中是否存在可疑数据;残差图 相关指数R2越大,残差平方和越小,拟合效果越好;R2越接近1,表明回归的效果越好。8 建立回归模型的基本步骤:确定研究对象,明确哪个变量时解释变量,哪个变量时预报变量。画出确定好的解释变量和预报变量得散点图,观察它们之间的关系;由经验确定回归方程的类型;按一定规则估计回归方程中的参数;得出结果后分析残差图是否异常。三、 典型例题例1 下表是某年美国旧轿车价格的调查资
10、料,今以x表示轿车的使用年数,y表示响应的年均价格,求y关于x的回归方程使用年数x12345678910年均价格y(美元)2651194314941087765538484290226204分析:由已知表格先画出散点图,可以看出随着使用年数的增加,轿车的平均价格在递减,但不在一条直线附近,但据此认为y与x之间具有线性回归关系是不科学的,要根据图的形状进行合理转化,转化成线性关系的变量间的关系。解:作出散点图如下图可以发现,各点并不是基本处于一条直线附近,因此,y与x之间应是非线性相关关系.与已学函数图像比较,用来刻画题中模型更为合理,令,则,题中数据变成如下表所示:x12345678910y7
11、.8837.5727.3096.9916.6406.2886.1825.6705.4215.318在散点图中可以看出变换的样本点分布在一条直线附近,因此可以用线性回归模型方程拟合,由表中数据可得,认为x与z之间具有线性相关关系,由表中数据的所以,最后回代,即四、 当堂练习:1 两个变量y与x的回归模型中,分别选择了4个不同模型,它们的相关指数R2如下,其中拟合效果最好的模型是( )A 模型1的 B 模型2的 C 模型3的 D模型4的答案 A五、 课堂小结1 相关系数r和相关指数R22 残差分析六、作业布置课本90页习题331.2回归分析的基本思想及其初步应用回归分析的基本思想及其初步应用课前预
12、习学案一、预习目标1 了解相关系数r和相关指数R2 2 了解残差分析 3 了解随机误差产生的原因二、预习内容1 相关系数r r0表明两个变量 ;r2)作为的估计量,其中, ,称为残差平方和,可以用衡量回归方程的预报精度,越小,预报精度 用图形来分析残差特性:用 来刻画回归的效果。三、提出问题1 随机误差产生的原因是什么?2如何建立模型拟合效果最好?课内探究学习一、 学习目标1 了解相关系数和相关指数的关系.2 理解随机误差产生的原因.33 会进行简单的残差分析二、学习重难点学习重点 1 相关系数r 2相关指数R2 3 随机误差学习难点 残差分析的应用三、学习过程1 相关系数r= 2 r的性质:
13、 3 随机误差的定义: 4相关指数R2= 5 R2的性质: 6 残差分析的步骤: 四、典型例题例 随着我国经济的快速发展,城乡居民的审核水平不断提高,为研究某市家庭平均收入与月平均生活支出的关系,该市统计部门随机调查10个家庭,得数据如下:家庭编号12345678910x收入(千元)0.81.11.31.51.51.82.02.22.42.8y支出千元0.71.01.21.01.31.51.31.72.02.5(1) 判断家庭平均收入与月平均生活支出是否相关?(2) 若二者线性相关,求回归直线方程。思路点拨:利用散点图观察收入x和支出y是否线性相关,若呈现线性相关关系,可利用公式来求出回归系数
14、,然后获得回归直线方程。解:作散点图观察发现各个数据对应的点都在一条直线附近,所以二者呈现线性相关关系。(2) 所以回归方程五、当堂练习1 山东鲁洁棉业公式的可按人员在7块并排形状大小相同的试验田上对某棉花新品种进行施化肥量x对产量y影响的试验,得到如下表所示的一组数据(单位:kg)施化肥量x15202530354045产量y330345365405445450455(1) 画出散点图;(2) 判断是否具有相关关系思路点拨 (1)散点图如图所示(2)由散点图可知,各组数据对应点大致都在一条直线附近,所以施化肥量x与产量y具有线性相关关系.六、课后练习与提高1 在对两个变量x、y进行线性回归分析
15、时有下列步骤:对所求出的回归方程作出解释;收集数据;求线性回归方程;求相关系数;根据所搜集的数据绘制散点图。如果根据可靠性要求能够作出变量x、y具有线性相关结论,则在下列操作顺序中正确的是( )A B C D 2 三点(3,10),(7,20),(11,24)的线性回归方程为( ) A B C D3 对有线性相关关系的两个变量建立的回归直线方程中,回归系数b ( )A.可以大于0 B 大于0 C 能等于0 D只能小于04 废品率和每吨生铁成本y(元)之间的回归直线方程为,表明( )A 废品率每增加,生铁成本增加258元; B废品率每增加,生铁成本增加2元;C废品率每增加,生铁成本每吨增加2元;D废品率不变,生铁成本增加256元;答案 1 D 2 B 3 A 4 C