复数计算练习题.pdf

上传人:H****o 文档编号:56686523 上传时间:2022-11-02 格式:PDF 页数:5 大小:65.67KB
返回 下载 相关 举报
复数计算练习题.pdf_第1页
第1页 / 共5页
复数计算练习题.pdf_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《复数计算练习题.pdf》由会员分享,可在线阅读,更多相关《复数计算练习题.pdf(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、一、选择题(本大题共 12小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1已知 a,bR,则 ab 是(ab)(ab)i 为纯虚数的()A充要条件B充分不必要条件C 必要不充分条件D既不充分也不必要条件答案C2.10i2i()A24i B24iC 24i D24i答案A3若 w1232i,则 w4w21 等于()A1 B0C 33i D13i答案B4在(1232i)12的展开式中,所有奇数项的和等于()A1 B1C 0 Di答案B5已知z1i2i,则复数 z()A13i B13iC 3i D3i答案B解析z1i2i,z(2i)(1 i)23i i213

2、i.z13i.6复数2i1i2等于()A4i B4iC 2i D2i答案C7复数?22i?4?13i?5等于()A13i B13iC 13i D13i答案B8复数 12i3()A12i B12iC 1 D3答案A解析12i312i12i,故选 A.9在复数集 C内分解因式 2x24x5 等于()A(x13i)(x13i)B(2x23i)(2x23i)C 2(x1i)(x1i)D 2(x1i)(x1i)答案B10复数 i3(1 i)2()A2 B2C 2i D2i答案A解析由题意得 i3(1 i)2i 2i 2i22,选 A.11复数 z11i的共轭复数是()A.1212i B.1212iC 1

3、i D1i答案B解析z11i1i?1i?1 i?1212i,z1212i,故选 B.12已知复数 z1i,则z22zz1()A2i B2i文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ

4、3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T

5、7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ

6、3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T

7、7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ

8、3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T

9、7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8C 2 D2答案B二、填空题(本大题共 4小题,每小题 5 分,共 20 分把答案填在题中横线上)13已知复数 z2i,则 z44z36z24z1_.答案6解析z44z36z24z1(z44z36z24z1)2(z1)42

10、(1 i)42(1 i)222(2i)22426.14i4 ni4 n1i4 n2i4 n3_(n 为正整数)答案015已知?1i?31ia3i,则 a_.答案23i16设 zC,z|z|2i,则 z_.答案34i解析设 zabi,则|z|a2b2.abi a2b22i.aa2b22,b1.a34,b1,z34i.三、解答题(本大题共 6小题,共 70 分,解答应出写文字说明、证明过程或演算步骤)17(10 分)若复数 zm2m 2(2m2m 3)i(m R)的共轭复数 z 对应的点在第一象限,求实数 m的集合解析由题意得 z m2m 2(2m2m 3)i.m2m 20,?2m2m 3?0,即

11、m2m 20,2m2m 30,解得 1m 32.文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4

12、M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3

13、 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4

14、M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3

15、 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4

16、M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3

17、 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U818(12 分)计算(1232i)3.解析方法一(1232i)3(1232i)2(1232i)(1232i)(1232i)(32i)2(12)234141.方法二原式(12)33(12)232i 312(32i)2(32i)318338i 98338i 1.19(12 分)已知复平面内点 A、B对应的复数分别是

18、z1sin2i,z2cos2icos2,其中(0,2),设 AB对应的复数为 z.(1)求复数 z;(2)若复数 z 对应的点 P在直线 y12x 上,求 的值解析(1)zz2z1cos2sin2i(cos2 1)1i(2sin2)(2)点 P的坐标为(1,2sin2)由点 P在直线 y12x,得 2sin212.sin214,sin 12.又(0,2),6,56,76,116.20(12 分)已知复数 z?1i?2 3?1i?2i,若 z2azb1i,试求实数 a、b 的值解析化简得z1i代入方程,得ab(2a)i 1i.ab1,2a1,a3,b4.21(12 分)设 z(a2a6)a22a

19、15a24i(aR),试判断复数 z 能否为纯虚数?并说明理由解析假设复数 z 能为纯虚数,则a2a60,a22a15a240.a3或a2,a5且a3且a2.文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V

20、6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文

21、档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V

22、6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文

23、档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V

24、6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文

25、档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8不存在 a 使复数 z 为纯虚数22(12 分)已知 aR,问复数 z(a22a4)(a22a2)i所对应的点在第几象限?复数z 对应点的轨迹是什么?解析由 a22a4(a1)233,(a22a2)(a

26、1)21 1,得 z 的实部为正数,z 的虚部为负数复数 z 对应的点在第四象限设 zxyi(x,yR),则xa22a4,y?a22a2?.消去 a22a,得 yx2(x3)复数 z 对应点的轨迹是一条射线,其方程为 yx2(x3)文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5

27、P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码

28、:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5

29、P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码

30、:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5

31、P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8文档编码:CC7E7T7T9V3 HN4V6Q5P3N3 ZZ3C9R4M7U8

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁