《2022年[北京理工大学]大学物理1知识点总结 .pdf》由会员分享,可在线阅读,更多相关《2022年[北京理工大学]大学物理1知识点总结 .pdf(35页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、专业专注质点运动学知识点:1.参考系为了确定物体的位置而选作参考的物体称为参考系。要作定量描述,还应在参考系上建立坐标系。2.位置矢量与运动方程位置矢量(位矢):是从坐标原点引向质点所在的有向线段,用矢量 r 表示。位矢用于确定质点在空间的位置。位矢与时间t 的函数关系:r r(t)x(t)?y(t)?z(t)?称为运动方程。位移矢量:是质点在时间 t 内的位置改变,即位移:r r(t t)r(t)轨道方程:质点运动轨迹的曲线方程。3.速度与加速度平均速度定义为单位时间内的位移速度,是质点位矢对时间的变化率平均速率定义为单位时间内的路程速率,是质点路程对时间的变化率r,即:Vd r:Vdts:
2、Vttdsdt专业专注相对运动对于两个相互作平动的参考系重点:1.掌握位置矢量、位移、速度、加速度、角速度、角加速度等描述质点运动和运动变化的物理量,明确它们的相对性、瞬时性和矢量性。2.确切理解法向加速度和切向加速度的物理意义;掌握圆周运动的角量和线量的关系,并能灵活运用计算问题。3.理解伽利略坐标、速度变换,能分析与平动有关的相对运动问题。加速度,是质点速度对时间的变化率:a法向加速度与切向加速度dv 加速度dt an?at 法向加速度an切向加速度at在圆周运动中角速度角加速度dv dt v2方向沿半径指向曲率中心(圆心),反映速度方向的变化。dv dt,方向沿轨道切线,反映速度大小的变
3、化。角量定义如下:d dt dt 2 v an 2,at dv R dt rpk rpk rkk,vpk vpkvkk,apk apkakk文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6
4、G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8
5、A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS1
6、0Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10
7、F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档
8、编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6
9、I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3专业专注难点:1.法向和切向
10、加速度2.相对运动问题三、功和能知识点:1.功的定义质点在力F的作用下有微小的位移dr(或写为 ds),则力作的功定义为力和位移的标积即dA F dr F dr cos Fdscos 对质点在力作用下的有限运动,力作的功为b A F dr a 在直角坐标系中,此功可写为b b b A aFxdx aFydy a Fzdz 应当注意:功的计算不仅与参考系的选择有关,一般还与物体的运动路径有关。只有保守力(重力、弹性力、万有引力)的功才只与始末位置有关,而与路径形状无关。2.动能定理质点动能定理:合外力对质点作的功等于质点动能的增量。1 2 1 2A mv mv02 2质点系动能定理:系统外力的功
11、与内力的功之和等于系统总动能的增量。A外A内EK E K 0应当注意,动能定理中的功只能在惯性系中计算。文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10
12、F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档
13、编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6
14、I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8
15、S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6
16、G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8
17、A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3专业专注3.势能重力势能:EP=mgh+c,零势面的选择视方便而
18、定。弹性势能:kx 规定弹簧无形变时的势能为零,它总取正值。万有引力势能:C由零势点的选择而定GMm-r 4.功能原理:A外A非保内(EK Ep)(EKOEFO)即:外力的功与非保守内力的功之和等于系统机械能的增量。5.机械能守恒定律外力的功与非保守内力的功之和等于零时,系统的机械能保持不变。即当A外A非呆内0时,EK Ep 常量重点:1.熟练掌握功的定义及变力作功的计算方法。2.理解保守力作功的特点及势能的概念,会计算重力势能、弹性势能和万有引力势能3.掌握动能定理及功能原理,并能用它们分析、解决质点在平面内运动时的力学问题4.掌握机械能守恒的条件及运用守恒定律分析、求解综和问题的思想和方法
19、。难点:1?计算变力的功。文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4
20、J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K
21、3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:
22、CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O
23、3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1
24、HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T
25、7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3专业专注2?理解一对内力的功。3?机械能守恒的条件及运用守恒定律分析、求解综和问题的思想和方法。文档编码:CJ6I7O3D8S1 HW6G2T
26、7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5
27、ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4
28、J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K
29、3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:
30、CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O
31、3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1
32、HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3专业专注动量角动量守恒知识点:1.动量定理合外力的冲量等于质点(或质点系)动量的增量。其数学表达式为t2 对质点F dt ti 2在直角坐标系中有 Fxdt px2 Px11t2 F Fydt Py2 Py1tit
33、 2L Fzdt Pz2 Pz11.动量守恒定律当一个质点当F外0 时,.Rmivi常矢量系所受合外力为零时这一质点系的总动量矢量就保持不变。即系中的分量式为P2Pi对质点系ti FdtF2 R,在直角坐标文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5
34、ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4
35、J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K
36、3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:
37、CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O
38、3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1
39、HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T
40、7K8A5 ZS10Q4J10F6K3专业专注质点的角动量:对某一固定点有r r r r L r p r mv 角动量定理:质点所受的合外力矩等于它的角动量对时间的变化率r dL r r r M,M ri Fidt i 1.角动量守恒定律若对某一固定点而言,质点受的合外力矩为零,则质点的角动量保持不变。即当M 0时,L Lo 常矢量重点:1.掌握动量定理。学会计算变力的冲量,并能灵活应用该定理分析、解决质点在平面内运动时的力学问题2.掌握动量守恒定律。掌握系统动量守恒的条件以及运用该定律分析问题的思想和方法,能分析系统在平面内运动的力学问题。3.掌握质点的角动量的物理意义,能用角动量定理计算问
41、题。4.掌握角动量守恒定律的条件以及运用该定律求解问题的基本方法。难点:1.计算变力的冲量。2.用动量定理系统动量守恒分析、解决质点在平面内运动时的力学问题。3.正确运用角动量定理及角动量守恒定律求解问题。当F0时,miVx常量当Fy0时,imVy常量当Fz0时,imiViz常量1.角动量定理i文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8
42、A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS1
43、0Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10
44、F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档
45、编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6
46、I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8
47、S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6
48、G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3专业专注四刚体力学基础知识点:文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O
49、3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1
50、HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T7K8A5 ZS10Q4J10F6K3文档编码:CJ6I7O3D8S1 HW6G2T