2022年《42平面向量基本定理及坐标表示》教案 .pdf

上传人:Q****o 文档编号:56646672 上传时间:2022-11-02 格式:PDF 页数:14 大小:150.24KB
返回 下载 相关 举报
2022年《42平面向量基本定理及坐标表示》教案 .pdf_第1页
第1页 / 共14页
2022年《42平面向量基本定理及坐标表示》教案 .pdf_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《2022年《42平面向量基本定理及坐标表示》教案 .pdf》由会员分享,可在线阅读,更多相关《2022年《42平面向量基本定理及坐标表示》教案 .pdf(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、平面向量基本定理及坐标表示适用学科数学适用年级高三适用区域新课标课时时长60 分钟知 识 点基底的概念与平面向量基本定理平面向量基本定理的应用平面向量的坐标表示及运算平面向量共线的坐标表示教学目标1.了解平面向量基本定理及其意义2.掌握平面向量的正交分解及坐标表示3.会用坐标表示平面向量的加法、减法与数乘运算4.理解用坐标表示的平面向量共线的条件.教学重点平面向量的坐标运算及用坐标表示平面向量共线教学难点向量的坐标运算及共线条件教学过程课堂导入音乐是人们在休闲时候的一种选择,不管是通俗的流行歌曲、动感的摇滚音乐,还是高雅的古典音乐,它们都给了人们不同的享受、不一样的感觉事实上,音乐有7个基本音

2、符:Do Re Mi Fa Sol La Si,所有的乐谱都是这几个音符的巧妙组合,音乐的奇妙就在于此在多样的向量中,我们能否找到它的“基本音符”呢?复习预习1上节课已经学习过向量的数乘,所谓向量的数乘为_,记为 _,它的长度与方向规定如下:(1)_|a|;文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编

3、码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S

4、3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C

5、10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9

6、R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6

7、V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5

8、C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D

9、6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1(2)当_时,a 的方向与 a 的方向相同;当 0 时,a 的方向与 a 的方向_知识讲解考点 1 两个向量的夹角(1)定义已知两个非零向量a 和 b,作OAuu u ra,OBuuu rb,则AOB 叫做向量 a 与 b 的夹角(2)范围向量夹角 的范围是 0,a 与 b 同向时,夹角 0;a与 b 反向时,夹角 .(3)向量垂直如果向量 a 与 b 的夹角是2,则 a 与 b 垂直,记作 ab.文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1

10、R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10

11、HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C

12、4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4

13、ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10

14、E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1

15、文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:C

16、B9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1考点 2 平面向量基本定理及坐标表示(1)平面向量基本定理:如果 e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数1,2,使 a1e12e2.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底(2)平面向量的坐标表示:在平

17、面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i,j 作为基底,对于平面内的一个向量a,有且只有一对实数 x,y,使 axiyj,把有序数对(x,y)叫做向量 a 的坐标,记作 a(x,y),其中 x 叫做 a 在 x 轴上的坐标,y 叫做 a 在 y 轴上的坐标设 OAu uu rxiyj,则向量 OAu uu r的坐标(x,y)就是 A 点的坐标,即若 OAu uu r(x,y),则 A 点坐标为(x,y),反之亦成立(O是坐标原点)文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4

18、ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10

19、E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1

20、文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:C

21、B9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1

22、R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10

23、HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C

24、4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1考点 3 平面向量的坐标运算(1)若 a(x1,y1),b(x2,y2),则 a b(x1 x2,y1 y2);(2)若 A(x1,y1),B(x2,y2),则ABu uu r(x2x1,y2y1);(3)若 a(x,y),则 a(x,y);(4)若 a(x1,y1),b(x2,y2),则 ab?x1y2x2y

25、1.例题精析【例题 1】【题干】如图,在梯形 ABCD 中,ADBC,且 AD13BC,E,F 分别为线段 AD 与 BC 的中点设BAuu u ra,BCuuu rb,试用 a,b 为基底表示向量EFuuu r,DFu uu r,CDuuu r.16ba12b13ba,【解析】EFuuu rEAuu u rABuuu rBFu uu r文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码

26、:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3

27、G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C1

28、0 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R

29、5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V

30、4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C

31、10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6

32、D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1DFuuu rDEuuu rEFu uu r16b13ba 16ba,CDuuu rCFuuu rFDu uu r12b16ba a23b.【例题 2】【题干】已知点 A(1,2),B(2,8)以及ACuuu r13ABuuu r,DAu uu r13BAuu u r,求点 C、D 的坐标和CDuuu r的坐标【解析】设点 C、D 的坐标分别为(x1,y1)、(x2,y2),得ACuu u r(x11,y12),ABuuu

33、r(3,6),DAuuu r(1x2,2y2),BAuu u r(3,6)因为ACuuu r13ABuu u r,DAuuu r13BAuu u r,所以有x111y122,和1x21,2y22.文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C

34、10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6

35、D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码

36、:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3

37、G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C1

38、0 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R

39、5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V

40、4 ZM5C10E9D6D1解得x10,y14,和x22,y20.所以点 C、D 的坐标分别是(0,4)、(2,0),从而CDuuu r(2,4).【例题 3】【题干】(1)在平面直角坐标系xOy 中,四边形 ABCD 的边 ABDC,ADBC.已知点 A(2,0),B(6,8),C(8,6),则 D 点的坐标为 _(2)已知向量 a(m,1),b(1,2),c(1,2),若(ab)c,则 m_.【解析】(1)由条件中的四边形ABCD 的对边分别平行,可以判断该四边形ABCD 是平行四边形设D(x,y),则有ABuu u rDCuu u r,即(6,8)(2,0)(8,6)(x,y),解得(x

41、,y)(0,2),即 D 点的坐标为(0,2)(2)由题意知 ab(m1,3),c(1,2),由(ab)c 得(3)(1)(m1)20,文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R

42、5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V

43、4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C

44、10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6

45、D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码

46、:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3

47、G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1即 2(m1)3,所以 m52.

48、文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:C

49、B9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1

50、R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10 HS9R5C4S6V4 ZM5C10E9D6D1文档编码:CB9S3G1R3C10

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁