《2022年17反比例函数教案 .pdf》由会员分享,可在线阅读,更多相关《2022年17反比例函数教案 .pdf(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、课题第十七章反比例函数1711 反比例函数的意义教学时间教学目标知识目标能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式能力目标能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想情感目标学生理解并掌握反比例函数教学重点理解反比例函数的概念,能根据已知条件写出函数解析式教学难点理解反比例函数的概念教学具准备三角尺教学要点如何解决教学重点在引入反比例函数的概念时,可适当复习一下第11 章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解注意引导学生对反比例函数概念的理解,看形式xky,等号左边是函数y,等号右边是一个分式,自变量x
2、 在分母上,且x 的指数是1,分子是不为0 的常数 k 如何突破教学难点通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。需要识记和特别强调的问题xky(k0)还可以写成1kxy(k0)或 xyk(k 0)的形式板书设计第十七章 反比例函数1711 反比例函数的意义例 1见教材P47 例 2(补充)当m 取什么值时,函数23)2(mxmy是反比例函数?教学活动 预设教学步骤教师活动预设学 生 活 动 预 设修改文档编码:CF
3、1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E
4、8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF
5、1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E
6、8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF
7、1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E
8、8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF
9、1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7文档编码:CF1Q7I9O5W6 HX5X3C4E9E8 ZR9Y9K6E2O7课堂引入例习题分析随堂练习课后练习1回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?2体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?分析:因为y 是 x的反比例函数,所以先设xky,再把x2 和 y6 代入上式求出常数k,即利用了待定系数法确定函数解析式。反比例函数xky(k0)的 另一种表达式是1kxy(k0),后一种写法中x 的次数是
10、1,因此m 的取值必须满足两个条件,即 m20 且 3m2 1,特别注意不要遗漏k0 这一条件,也要防止出现3m21 的错误。解得 m 2 例 1见教材P47 分析:因为y 是 x 的反比例函数,所以先设xky,再把 x2 和 y6 代入上式求出常数k,即利用了待定系数法确定函数解析式。例 1(补充)下列等式中,哪些是反比例函数(1)3xy(2)xy2(3)xy 21(4)25xy(5)xy23(6)31xy(7)yx4 分析:根据反比例函数的定义,关键看上面各式能否改写成xky(k 为常数,k0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是xxy31,分子不是
11、常数,只有(2)、(3)、(5)能写成定义的形式1苹果每千克x 元,花10 元钱可买y 千克的苹果,则y 与 x 之间的函数关系式为2若函数28)3(mxmy是反比例函数,则 m 的取值是3矩形的面积为4,一条边的长为x,另一条边的长为y,则 y 与 x 的函数解析式为4已知y 与 x 成反比例,且当x 2 时,y3,则 y 与 x 之间的函数关系式是,当 x 3 时,y5函数21xy中自变量x 的取值范围是已知函数yy1y2,y1与 x1 成正比例,y2与 x 成反比例,且当x1 时,y0;当x4时,y9,求当 x 1 时 y 的值文档编码:CV4E3J6O5W5 HX2R9A4D1B6 Z
12、K2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3
13、J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 Z
14、K2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3
15、J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 Z
16、K2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3
17、J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 Z
18、K2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1教学反思课题12 反比例函数的图象和性质(2)教学时间教学目标知识目标使学生进一步理解和掌握反比例函数及其图象与性质能力目标能灵活运用函数图象和性质解决一些较综合的问题情感目标深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法教学重点理解并掌握反比例函数的图象和性质,并能利用它们解决一些综合问题教学难点学会从图象上分析、解决问题教学具准备三角尺教学要点如何解决教学重点帮助学生熟练掌握反比例函数的图象
19、和性质,要让学生学会如何通过函数图象分析解析式,或由函数解析式分析图象的方法,以便更好的理解数形结合的思想,最终能达到从“数”和“形”两方面去分析问题、解决问题。如何突破教学难点一是让学生理解点在图象上的含义,掌握如何用待定系数法去求解析式,复习巩固反比例函数的意义;二是通过函数解析式去分析图象及性质,由“数”到“形”,体会数形结合思想,加深学生对反比例函数图象和性质的理解。需要识记和特别强调的问题反比例函数xky的图象位置及y 随 x 的变化情况取决于常数k 的符号,因此要先求常数k文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W
20、5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D
21、2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W
22、5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D
23、2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W
24、5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D
25、2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W
26、5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1板书设计12 反比例函数的图象和性质例 3见教材P51 随 堂 练 习 已 知 点(1,y1)、(2,y2)、(,y3)在 双 曲 线xky12上,则下列关系式正确的是()(A)y1y2y3(B)y1y3y2(C)y2y1y3(D)y3y1y2教学活动 预设教学步骤教师活动预设学 生 活 动 预 设修改文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编
27、码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A
28、4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编
29、码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A
30、4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编
31、码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A
32、4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编
33、码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1课堂引入例习题分析随堂练习课后练习复 习 上 节 课 所 学的内容1什么是反比例函数?2反比例函数的图象是什么?有什么性质?1若直线y kxb 经过第一、二、四象限,则函数xkby的图象在()(A)第 一、三 象 限(B)第二、四象限(C)第 三、四 象 限(D)第一、二象限2 已 知 点(1,y1)、(2,y2)、(,y3)在 双 曲 线xky12上,则下列 关 系 式 正 确 的 是()(A)y1 y2 y3(B)y1y3y2(C)y2 y1 y3(D)y3y1 y2已 知 反 比 例 函 数xky12的 图 象 在
34、每个象限内函数值y随自变量x 的增大而减小,且k 的值还满足)12(29k 2k1,若k 为整数,求反比例函数的解析式例 3见教材P51 分析:反比例函数xky的图象位置及y 随 x的变化情况取决于常数k 的符号,因此要先求常数 k,而题中已知图象经过点A(2,6),即表明把 A 点坐标代入解析式成立,所以用待定系数法能求出 k,这样解析式也就确定了。例 4见教材P52 例 1(补充)若点A(2,a)、B(1,b)、C(3,c)在反比例函数xky(k0)图象上,则 a、b、c 的大小关系怎样?分析:由k0 可知,双曲线位于第二、四象限,且在每一象限内,y 随 x 的增大而增大,因为A、B 在第
35、二象限,且1 2,故ba0;又C 在第四象限,则c0,所以ba0c 说明:由于双曲线的两个分支在两个不同的象限内,因此函数y 随 x 的增减性就不能连续的看,一定要强调“在每一象限内”,否则,笼统说 k0 时 y 随 x 的增大而增大,就会误认为3 最大,则 c 最大,出现错误。此题还可以画草图,比较a、b、c 的大小,利用图象直观易懂,不易出错,应学会使用。例 2(补充)如图,一次函数ykxb 的图象与反比例函数xmy的图象交于A(2,1)、B(1,n)两点(1)求反比例函数和一次函数的解析式(2)根据图象写出一次函数的值大于反比例函数的值的x 的取值范围教学反思文档编码:CV4E3J6O5
36、W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5
37、D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5
38、W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5
39、D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5
40、W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5
41、D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5
42、W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1课题172 实际问题与反比例函数(1)教学时间教学目标知识目标利用反比例函数的知识分析、解决实际问题能力目标渗透数形结合思想,提高学生用函数观点解决问题的能力情感目标培养学生热爱科学,勤于动手的精神教学重点利用反比例函数的知识分析、解决实际问题教学难点分析实际问题中的数量关系,正确写出函数解析式教学具准备三角尺教学要点如何解决教学重点用函数观点解实际问题,一要搞清题目中的基本数量关系,
43、将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;二是要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围;三要熟练掌握反比例函数的意义、图象和性质,特别是图象。如何突破教学难点学生根据基本公式很容易写出函数关系式,同时也是要让学生学会分析问题的方法。利用反比例函数的定义和性质来解决的实际问题,提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。需要识记和特别强调的问题圆柱的体积底面积高,工作总量工作速度工作时间板书设计172 实际问题与反比例函数小林家离工作单位的距离为3600 米,他每天骑自行车上班时
44、的速度为v(米/分),所需时间为t(分)(1)则速度v 与时间 t 之间有怎样的函数关系?(2)若小林到单位用15 分钟,那么他骑车的平均速度是多少?(3)如果小林骑车的速度最快为300 米/分,那他至少需要几分钟到达单位?文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6
45、 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4
46、E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6
47、 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4
48、E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6
49、 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4
50、E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1文档编码:CV4E3J6O5W5 HX2R9A4D1B6 ZK2T5D2R6O1教学活动 预设教学步骤教师活动预设学 生 活 动 预 设修改课堂引入例习题分析随堂练习课后练习布置作业寒 假 到 了,小 明正与几个同伴