多元函数微分法及其应用习题及答案.pdf

上传人:Q****o 文档编号:56622883 上传时间:2022-11-02 格式:PDF 页数:29 大小:806.64KB
返回 下载 相关 举报
多元函数微分法及其应用习题及答案.pdf_第1页
第1页 / 共29页
多元函数微分法及其应用习题及答案.pdf_第2页
第2页 / 共29页
点击查看更多>>
资源描述

《多元函数微分法及其应用习题及答案.pdf》由会员分享,可在线阅读,更多相关《多元函数微分法及其应用习题及答案.pdf(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精品资料欢迎下载第八章多元函数微分法及其应用(A)1填空题(1)若yxfz,在区域 D 上的两个混合偏导数yxz2,xyz2,则在 D 上,xyzyxz22。(2)函数yxfz,在点00,yx处可微的条件是yxfz,在点00,yx处的偏导数存在。(3)函数yxfz,在点00,yx可微是yxfz,在点00,yx处连续的条件。2求下列函数的定义域(1)yxz;(2)22arccosyxzu3求下列各极限(1)xxyyxsinlim00;(2)11lim00 xyxyyx;(3)22222200)()cos(1limyxyxyxyx4设xyxzln,求yxz23及23yxz。5求下列函数的偏导数(1

2、)xyarctgz;(2)xyzln;(3)32zxyeu。6设utuvzcos2,teu,tvln,求全导数dtdz。7设zyeux,tx,tysin,tzcos,求dtdu。8曲线4422yyxz,在点(2,4,5)处的切线对于x轴的倾角是多少?9求方程1222222czbyax所确定的函数z的偏导数。10设yxyezx2sin2,求所有二阶偏导数。-第 1 页,共 29 页精品p d f 资料 可编辑资料-精品资料欢迎下载11设yxfz,是由方程yzzxln确定的隐函数,求xz,yz。12设xyeexy,求dxdy。13设yxfz,是由方程03xyzez确定的隐函数,求xz,yz,yxz

3、2。14设yyezxcos2,求全微分 dz。15求函数222lnyxz在点2,1的全微分。16利用全微分求2201.498.2的近似值。17求抛物面22yxz与抛物柱面2xy的交线上的点2,1,1P处的切线方程和平面方程。18求曲面3914222zyx上点3,1,2P处的切平面方程和法线方程。19求曲线tx34,2ty,3tz上点0000,zyxM,使在该点处曲线的切线平行于平面62zyx。20求函数224,yxyxyxf的极值。21求函数yyxeyxfx2,22的极值。22要建造一个容积为10 立方米的无盖长方体贮水池,底面材料单价每平方米20元,侧面材料单价每平方米8 元。问应如何设计尺

4、寸,方便材料造价最省?(B)1求下列函数的定义域(1)222410lnlnarcsinyxyxz;(2)222241yxyxu2(1)设22,yxxyyxf,求yxf,,xyyxf,。(2)设yxyxf2,,求yxfxyf,3求下列函数的极限-第 2 页,共 29 页精品p d f 资料 可编辑资料-文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9

5、ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U

6、6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9

7、ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U

8、6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9

9、ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U

10、6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6精品资料欢迎下载(1)2222221limyxyxyx;(

11、2)22221100sinlimyxyxyxee4设0,0,00,0),(,24yxyxyxxyyxf当当,问yxfyx,lim00是否存在?5讨论函数的连续性,其中yxyxyxyxxyxf2,02,22sin,。6二元函数0,0,00,0,22yxyxyxxyyxf在点0,0处:连续,偏导数存在;连续,偏导数不存在;不连续,偏导数存在;不连续,偏导数不存在。7设yyxz21,求xz,yz。8设zyxfu23223,求xf,22xf。9设zyxfu2,3,223,求zf,xzf2。10设2222,yxyxxyfz,f可微,求 dt。11设0,xzzyxyf,求xz,yz。12设0zxyz,求1

12、11zyxdz。13设sin,cosrrfz可微,求全微分 dz。14设yxfz,是由方程0,yzzxf所确定的隐函数,其中f具有连续的偏导数,求 dz,并由此求xz和yz。15求xyyxz22的偏导数。16设10222zyxzyx,求dzdx,dzdy。-第 3 页,共 29 页精品p d f 资料 可编辑资料-文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9

13、E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档

14、编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9

15、E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档

16、编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9

17、E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档

18、编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6精品资料欢迎下载17设xyzeu,求zyxu

19、3。18求函数xyzu在点2,1,5处沿从点2,1,5到点14,4,9方向的方向导数。19求函数222zyxxu在点2,2,1M沿tx,22ty,42tz在此 点的切线方向上的方向导数。20求函数zyxu2286在点 P 处沿方向 n的方向导数。21判断题:(简单说明理由)(1)00,yxyyxf就是yxf,在00,yx处沿y轴的方向导数。(2)若yxf,在00,yx处的偏导数yf,yf存在,则沿任一方向l 的方向导数均存在。22证明曲面4323232zyx上任意一点的切平面在坐标轴上的截距的平方为常数。23证明:球面:1222zyx上任意一点cba,处的法线都经过球心。24求椭球面16322

20、2zyx上的一点3,2,1处的切平面与平面0z的交角。25设u,v都是x,y,z的函数,u,v的各偏导数都存在且连续,证明:26问函数zxyu2在2,1,1P处沿什么方向的方向导最大,并求此方向导数的最大值。27求内接于椭球面122222czbyax的最大长方体的体积。28某公司通过报纸和电视传媒做某种产品的促销广告,根据统计资料,销售收入R 与 报 纸广 告费x及 电 视广 告费 y(单位:万 元)之 间 的 关 系有 如下 经验 公 式:221028311415yxxyyxR,在限定广告费为1.5 万元的情况下,求相应的最优广告策略。29求函数yxeyxf,的n阶麦克劳林公式,并写出余项。

21、-第 4 页,共 29 页精品p d f 资料 可编辑资料-文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 Z

22、O6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6

23、O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 Z

24、O6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6

25、O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 Z

26、O6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6

27、O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6精品资料欢迎下载30利用函数yxyxf,的 2 阶泰勒公式,计算02.111的近似值。(C)1证明0lim2200yxxyyx。2设yxyxyxf,|,,其中yx,在点0,0,邻域内连续,问(1)yx,在什么条件下,偏导数0,0 xf,0,0yf存在;(2)yx,在什么条件下,yxf,在0,0处可微

28、。3设txfy,而t为由方程0,tyx所决定的函数,且tyx,是可微的,试求dxdy。4设yxzz,由0ln2dtezzxyt确定,求yxt2。5从方程组1122222vuzyxvuzyx中求出xu,xv,2xu,2xv。6设byaxeyxuz,,且02yxu,试确定常数a,b,使函数yxzz,能满足方程:02zyzxzyxz。7证明:旋转曲面22yxfz)0(f上任一点处的法线与旋转轴相交。8试证曲面azyx(0a)上任何点处的切平面在各坐标轴上的截距之和等于a。9抛物面22yxz被平面1zyx截成一椭圆,求原点到这椭圆的最长与最短距离。10 设x轴正向到方向 l 的转角为,求函数22,yx

29、yxyxf在点1,1沿方向 l 的方向导数,并分别确定转角,使这导数有(1)最大值;(2)最小值;(3)等于 0。第八章多元函数微分法及其应用(A)1填空题-第 5 页,共 29 页精品p d f 资料 可编辑资料-文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6

30、D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8

31、Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6

32、D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8

33、Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6

34、D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8

35、Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6精品资料欢迎下载(1)若yxfz,在区域D上的两个混合偏导数yxz2,xyz2连续,则在D上,xyzyxz22。(2)函数yxfz,在点00,y

36、x处可微的必要条件是yxfz,在点00,yx处的偏导数存在。(3)函数yxfz,在点00,yx可微是yxfz,在点00,yx处连续的充分条件。2求下列函数的定义域(1)yxz解:设定义域为 D,由0y和0yx,即02yx,0 x得yxyxyxD2,0,0|,,如图 1 所示(2)22arccosyxzu解:设定义域为 D,由022yx,即x,y不同时为零,且122yxz,即222yxz,得0,|,22222yxyxzzyxD。3求下列各极限(1)xxyyxsinlim00(2)11lim00 xyxyyx解:原式yxyxyyxsinlim00解:原式)11)(11()11(lim00 xyxy

37、xyxyyx001211l i m00 xyyxy O(0,1)x 图 1-第 6 页,共 29 页精品p d f 资料 可编辑资料-文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D

38、6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y

39、3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D

40、6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y

41、3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D

42、6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y

43、3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6精品资料欢迎下载(3)22222200)()cos(1limyxyxyxyx解:原式222222222200422sin2limyxyxyxyxyx220011lim21yxyx4设xyxzln,求yxz23及23yxz解:1

44、lnlnxyxyyxxyxzxxyyxz122,023yxz,yxyxyxz12,2231yyxz5求下列函数的偏导数(1)xyarctgz解:222222211yxyyxyxxxyxxyxz类似地22211yxxxyyxyxz(2)xyzln解:xyxxyxyxxxzln211lnln121lnln同理可证得:xyyyzln21(3)32zxyeu-第 7 页,共 29 页精品p d f 资料 可编辑资料-文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3

45、Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6

46、T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3

47、Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6

48、T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3

49、Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6

50、T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3Y9 HC7U9E5L4F9 ZO6D6T3I8N6文档编码:CI5U6O8Y3

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁