《2021年北师大版八年级数学下册《因式分解》练习(含答案).pdf》由会员分享,可在线阅读,更多相关《2021年北师大版八年级数学下册《因式分解》练习(含答案).pdf(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、学习资料收集于网络,仅供参考学习资料分解因式练习卷一、选择题1.下列各式由左边到右边的变形中,是因式分解的为()A.23()33a abaab B.2(2)(3)6aaaa C.221(2)1xxx x D.22()()abab ab2.下列多项式中,能用提公因式法分解因式的是()A.2xy B.22xx C.22xy D.22xxyy3.把多项式(1)(1)(1)mmm提取公因式(1)m后,余下的部分是()A.1m B.2m C.2 D.2m4.分解因式:24x=()A.2(4)x B.2(2)x C.(2)(2)xxD.(4)(4)xx5.(3)(3)ayay是下列哪一个多项式因式分解的结
2、果().A.229ay B.229ay C.229ay D.229ay6.若4ab,则222aabb的值是()A.8 B.16 C.2 D.4 7.因式分解2aab,正确的结果是()A.2(1)ab B.(1)(1)abbC.2()abD.2(1)ab8.把多项式244xx分解因式的结果是()A.2(2)x B.(4)4x x C.(2)(2)xx D.2(2)x9.若215(3)()xmxxxn,则m的值为()A.5 B.5 C.2 D.2 10.下列因式分解中,错误的是()A.219(13)(13)xxx B.2211()42aaa C.()mxmym xy D.()()axaybxbya
3、bxy|精.|品.|可.|编.|辑.|学.|习.|资.|料.*|*|*|*|欢.|迎.|下.|载.第 1 页,共 6 页学习资料收集于网络,仅供参考学习资料二、填空题11.多项式2232128xxyxy各项的公因式是 _.12.已知 xy=6,xy=4,则 x2yxy2的值为 .13.一个长方形的面积是2(9)x平方米,其长为(3)x米,用含有x的整式表示它的宽为 _米.14.(1)x()21x15.若多项式 4a2+M能用平方差公式分解因式,则单项式 M=_(写出一个即可).16.在多项式241x加上一个单项式后,能成为一个整式的完全平方式,那么所添加的单项式还可以是17.已知:x+y=1,
4、则222121yxyx的值是 _.18.若512x3,04422xxx则的值为 _.20.如图所示,边长为a 米的正方形广场,扩建后的正方形边长比原来的长2米,则扩建后的广场面积增加了_米2三、解答题21.分解因式:(1)222aab;(2)2x218;(3)22242xxyy;(4)2242xx.22.请 你 从 下 列 各 式 中,任 选 两 式 作 差,并 将 得 到 的 式 子 进 行 因 式 分解2224()19axyb,|精.|品.|可.|编.|辑.|学.|习.|资.|料.*|*|*|*|欢.|迎.|下.|载.第 2 页,共 6 页文档编码:CR6B1X5H10H2 HB8B4W4
5、H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I
6、1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1
7、X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4
8、W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T
9、2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6
10、B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8
11、B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4学习资料收集于网络,仅供参考学习资料23.设 n 为整数求证:(2n+1)225 能被 4 整除.24.在直径 D1=1 8mm的圆形零件上挖出半径为D2=14mm 的圆孔,则所得圆环形零件的底面积是多少?(结果保留整数).27.先阅读下列材料,再分解因式:(1)要把多项式 amanbmbn分解因式,可以先把它的
12、前两项分成一组,并提出a;把它的后两项分成一组,并提出b.从而得到()()a mnb mn.这时由于()a mn与()b mn又有公因式()mn,于是可提出公因式()mn,从而得到()()mn ab.因此有()()amanbmbnamanbmbn()()a mnb mn()()mn ab.这种分解因式的方法叫做分组分解法.如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来分解因式了.(2)请用(1)中提供的方法分解因式:2aabacbc;255mnmnm.|精.|品.|可.|编.|辑.|学.|习.|资.|料.*|*|*|*|欢.|迎.|下.|
13、载.第 3 页,共 6 页文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4
14、文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H
15、10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H
16、4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1
17、D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X
18、5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W
19、4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4学习资料收集于网络,仅供参考学习资料参考答案一、选择题1.D;2.B;3.D;4.C;5.C;6.B;7.B;8.A;9.C;10.C 二、填空题11.2x;12.24;13.3x;14.1x;15.本题是一道开放题,答案不唯一.M 为某
20、个数或式的平方的相反数即可,如:b2,1,416.4x、44x、1,24x中的一个即可;17.12;提示:本题无法直接求出字母x、y 的值,可首先将求值式进行因式分解,使求值式中含有已知条件式,再将其整体代入求解.因222121yxyx=21(x+y)2,所以将 x+y=1代入该式得:222121yxyx=21.18.7;19.答案不唯一,如33()()a babab abab等;20.4(a+1);三、解答题21.(1)2()a ab;(2)2(x3)(x3);(3)22()xy;(4)22(1)x.22.本题是一道开放性试题,答案不唯一解:作 差如:2249ab,2()1xy;22()4x
21、ya;22()9xyb;21()xy;224()axy;229()bxy等分解因式如:12249ab 322()9xyb|精.|品.|可.|编.|辑.|学.|习.|资.|料.*|*|*|*|欢.|迎.|下.|载.第 4 页,共 6 页文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 H
22、B8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP
23、6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码
24、:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2
25、 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9
26、ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档
27、编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4学习资料收集于网络,仅供参考学
28、习资料(23)(23)abab =(x+y+3b)(x+y3b)221()xy 4224()axy1()1()xyxy =2a+(x+y)2a(x+y)(1)(1)xyxy =(2a+x+y)(2axy)23.提示:判断(2n+1)225 能否被 4 整除,主要看其因式分解后是否能写成4 与另一个因式积的形式,因(2n+1)225=4(n+3)(n2),由此可知该式能被 4 整除.24.解:环形面积就是大圆面积减去小圆面积,于是 S环=21R一 22R =212D一 222D =12122222DDDD =(9+7)(9 7)=126396(mm2)故所得圆环形零件的底面积约为396mm225
29、.用一张图、5 张图、4 张图拼成下图矩形,由图形的面积可将多项式a25ab4b2分解为(ab)(a4b).|精.|品.|可.|编.|辑.|学.|习.|资.|料.*|*|*|*|欢.|迎.|下.|载.第 5 页,共 6 页文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4
30、H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I
31、1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1
32、X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4
33、W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T
34、2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6
35、B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4学习资料收集于网络,仅供参考学习资料26.
36、解:(1)13292=8 11,17232=8 35(2)规律:任意两个奇数的平方差是8 的倍数(3)证明:设 m、n 为整数,两个奇数可表示为2m+1和 2n+1,则(2m+1)2(2n+1)2=(2m+1)+(2n+1)(2m+1)(2n1)=4(m n)(m+n+1)当 m、n 同是奇数或偶数时,m n 一定为偶数,所以 4(mn)一定是 8 的倍数;当 m、n 一奇一偶时,m+n+1一定为偶数,所以4(m+n+1)一定是 8 的倍数所以任意两个奇数的平方差是8 的倍数27.()()ab ac;(5)()mmn.|精.|品.|可.|编.|辑.|学.|习.|资.|料.*|*|*|*|欢.|
37、迎.|下.|载.第 6 页,共 6 页文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3
38、T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR
39、6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB
40、8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6
41、Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:
42、CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4文档编码:CR6B1X5H10H2 HB8B4W4H4W9 ZP6Y3T2I1D4