高中数学 331《二元一次不等式表示的平面区域(1)》教案 苏教版必修.doc

上传人:飞****2 文档编号:56547163 上传时间:2022-11-02 格式:DOC 页数:5 大小:947KB
返回 下载 相关 举报
高中数学 331《二元一次不等式表示的平面区域(1)》教案 苏教版必修.doc_第1页
第1页 / 共5页
高中数学 331《二元一次不等式表示的平面区域(1)》教案 苏教版必修.doc_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《高中数学 331《二元一次不等式表示的平面区域(1)》教案 苏教版必修.doc》由会员分享,可在线阅读,更多相关《高中数学 331《二元一次不等式表示的平面区域(1)》教案 苏教版必修.doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第 5 课时:3.3.1 二元一次不等式表示的平面区域(1)【三维目标】:一、知识与技能1.从实际情境中抽象出二元一次不等式组;2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;3.能从实际情境中抽象出一些简单的二元线性规划问题,掌握简单的二元线性规划问题的解法,培养学生的数学应用意识和解决实际问题的能力;4.会用“选点法”确定二元一次不等式表示的平面区域二、过程与方法1.本节课首先借助一个实例提出二元一次不等式组的相关概念,通过例子说明如何用二元一次不等式(组)来表示的平面区域。始终渗透“直线定界,特殊点定域”的思想,帮助学生用集合的观点和语言来分析和描述结合图形的问题,使

2、问题更清晰和准确。教学中也特别提醒学生注意(或)表示区域时不包括边界,而则包括边界2.经历从实际情境中抽象出二元一次不等式组的过程,提高数学建模的能力;三、情感、态度与价值观1. 通过本节课的学习,体会数学来源与生活,提高数学学习兴趣。2. 培养学生数形结合、化归、集合的数学思想【教学重点与难点】:重点:用二元一次不等式表示平面区域;难点:二元一次不等式表示的平面区域的确定,即如何确定不等式(或)表示的哪一侧区域【学法与教学用具】:1. 学法:启发学生观察图象,循序渐进地理解掌握相关概念。以学生探究为主,老师点拨为辅。学生之间分组讨论,交流心得,分享成果,进行思维碰撞。同时可借助计算机等媒体工

3、具来进行演示。2. 教学用具:直角板、投影仪(多媒体教室)【授课类型】:新授课【课时安排】:1课时【教学思路】: 一、创设情景,揭示课题1.情境:下表给出了三种食物的维生素含量及成本:维生素A(单位/kg)维生素B(单位/kg)成 本(元)X3007005Y5001004Z3003003某人欲将这三种食物混合成100kg的食品,要使混合食品中至少含35000单位的维生素及40000单位的维生素,设X、Y这两种食物各取kg、kg,那么应满足怎样的关系?解答:X、Y这两种食物分别为kg、kg,食物为kg,则有,即,又,(介绍二元一次不等式的概念),如果进一步要求如何取值时总成本最小呢?如何解决该问

4、题问题转化为在以上不等式组约束下,求(介绍目标函数概念)的最大值问题要解决以上问题,我们首先要来了解二元一次不等式的几何意义2.问题:坐标满足二元一次方程的点组成的图形是一条直线怎样才能快速准确地画出直线呢?(学生答:描两点连成线例如:该直线经过点和,画出经过两点的直线即为所求)教师问:怎样判断点在不在直线上呢?结论:点的坐标满足直线的方程,则点在直线上;点的坐标不满足直线方程,则点不在直线上坐标满足不等式的点是否在直线上呢?这些点在哪儿呢?与直线的位置有什么关系呢? 二、研探新知通过代特殊点的方法检验满足不等式的点的位置,并猜想出结论:坐标满足不等式的点在直线的上方如图,在直线上方任取一点,

5、过作平行于轴的直线交直线于点,点在直线上方,点在点上方,即,点为直线上方的任意一点,所以,直线上方任意点,都有,即;同理,对于直线左下方任意点,都有,即又平面上任意一点不在直线上即在直线上方或直线下方因此,满足不等式的点在直线的上方,我们称不等式表示的是直线上方的平面区域;同样,不等式表示的是直线下方的平面区域学生练习:判断不等式表示的是直线上方还是下方的平面区域?(下方)下半平面上半平面结论:一般地, 在直角坐标系中,二元一次不等式表示某侧所有点组成的平面区域.我们把直线画成虚线,表示区域不包括边界.而不等式表示区域时则包括边界,把边界画成实线.一般地,直线把平面分成两个区域(如图):表示直

6、线上方的平面区域;表示直线下方的平面区域说明:(1)表示直线及直线上方的平面区域;表示直线及直线下方的平面区域 (2)对于不含边界的区域,要将边界画成虚线三、质疑答辩,排难解惑,发展思维 例1(教材例1)画出下列不等式所表示的平面区域:(1);(2)解:(1)(2)两个不等式所表示的平面区域如下图所示:例2 判断下列不等式所表示的平面区域在相应直线的哪个区域?(用“上方”或“下方”填空)(1)不等式表示直线 的平面区域;(2)不等式表示直线 的平面区域;(3)不等式表示直线 的平面区域;(4)不等式表示直线 的平面区域说明:二元一次不等式在平面直角坐标系中表示某一侧所有点组成的平面区域可以用“

7、选点法”确定具体区域:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域例3(1)若点在直线下方区域,则实数的取值范围为 (2)若点在直线的上方区域,则点在此直线的下方还是上方区域?解:(1)直线下方的点的坐标满足,(2)直线的上方区域的点的坐标满足,点在直线的上方区域,又,点在此直线的上方区域例4(教材例2) 将下列各图中的平面区域(阴影部分)用不等式表示出来(其中图(1)中区域不包括轴):解:(1);(2);(3)例5 原点和点在直线的两侧,则实数的取值范围是 提示:将点和的坐标代入的符号相反,即,

8、例6 用平面区域表示.不等式组的解集。分析:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分。解:不等式表示直线右下方的区域,表示直线右上方的区域,取两区域重叠的部分,如图的阴影部分就表示原不等式组的解集。结论:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分。变式1:画出不等式表示的平面区域。变式2:画出不等式表示的平面区域变式3:由直线,和围成的三角形区域(包括边界)用不等式可表示为 。四、巩固深化,反馈矫正 五、归纳整理,整体认识1二元一次不等式的几何意义;二元一次不等式表示的平面区域2二元一次不等式表示哪个平面区域的判断方法(二元一次不等式表示的平面区域的确定)3二元一次不等式组表示的平面区域4懂得画出二元一次不等式在平面区域中表示的图形5注意如何表示边界 六、承上启下,留下悬念 1由直线围成的三角形区域(包括边界)用不等式可表示为_七、板书设计(略)八、课后记:

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁