《第6章 假设检验.ppt》由会员分享,可在线阅读,更多相关《第6章 假设检验.ppt(64页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第第6章章 假设检验假设检验统计研究的程序统计研究的程序统计研究目的统计研究目的统计设计统计设计统统计计调调查查统统计计整整理理推推断断分分析析描描述述分分析析2008-2009假设检验在统计方法中的地位假设检验在统计方法中的地位2008-2009学习目标1.假设检验的基本思想和原理假设检验的基本思想和原理 2.假设检验的步骤假设检验的步骤3.总体均值的检验总体均值的检验4.总体比例的检验总体比例的检验5.P值的计算与应用值的计算与应用6.用用Excel进行检验进行检验2008-20096.1 假设检验的基本问题假设检验的基本问题v假设的陈述假设的陈述v两类错误与显著性水平两类错误与显著性水平
2、v统计量与拒绝域统计量与拒绝域v利用利用P 值进行决策值进行决策2008-2009什么是假设?(hypothesis)对对总总体体参参数数的的具具体体数数值值所所作作的陈述的陈述总体参数包括总总体体均均值值、比例比例、方差方差等分析之前必需陈述我认为这种新药的疗效我认为这种新药的疗效比原有的药物更有效比原有的药物更有效!v假设的陈述假设的陈述2008-2009什么是假设检验什么是假设检验?(hypothesis test)1.先对总体的参数(或分布形式)提出某种假设,然后利用样本信息判断假设是否成立的过程2.有参数检验和非参数检验3.逻辑上运用反证法,统计上依据小概率原理2008-2009原假
3、设原假设(null hypothesis)1.研究者想收集证据予以反对的假设2.又称“0假设”3.总是有符号 ,或 表示为 H0H0:=某一数值 指定为符号=,或 例如,H0:10cm2008-20091.研究者想收集证据予以支持的假设2.也称“研究假设”3.总是有符号 ,或 4.表示为 H1H1:某一数值,或 某一数值例如,H1:10cm,或 10cm备择假设备择假设(alternative hypothesis)2008-2009【例例】一种零件的生产标准是直径应为10cm,为对生产过程进行控制,质量监测人员定期对一台加工机床检查,确定这台机床生产的零件是否符合标准要求。如果零件的平均直径
4、大于或小于10cm,则表明生产过程不正常,必须进行调整。试陈述用来检验生产过程是否正常的原假设和备择假设提出假设提出假设解解解解:研研究究者者想想收收集集证证据据予予以以证证明明的的假假设设应应该该是是“生生产产过过程程不不正正常常”。建立的原假设和备择假设为。建立的原假设和备择假设为 H H0 0:10cm H 10cm H1 1:10cm 10cm 2008-2009【例例】某品牌洗涤剂在它的产品说明书中声称:平均净含量不少于500克。从消费者的利益出发,有关研究人员要通过抽检其中的一批产品来验证该产品制造商的说明是否属实。试陈述用于检验的原假设与备择假设解解解解:研研究究者者抽抽检检的的
5、意意图图是是倾倾向向于于证证实实这这种种洗洗涤涤剂剂的的平平均均净净含含量量并并不不符符合合说说明明书书中中的的陈陈述述。建建立立的的原假设和备择假设为原假设和备择假设为 H H0 0:500 H 500 H1 1:500”或“”的假设检验,称为单侧检验或单尾检验(one-tailed test)备择假设的方向为“”,称为右侧检验右侧检验 双侧检验与单侧检验双侧检验与单侧检验2008-2009假设的形式假设的形式假假设设双双侧检验侧检验单侧检验单侧检验左左侧检验侧检验右右侧检验侧检验原假设原假设H0:=0 0H0:0 0H0:0 0备择假设备择假设H1:0 0H1:0 02008-2009假设
6、检验中的两类错误第第类错误类错误(弃真错误弃真错误)原假设为真时拒绝原假设第类错误的概率记为被称为显著性水平第第类错误类错误(取伪错误取伪错误)原假设为假时未拒绝原假设第 类 错 误 的 概 率 记 为(Beta)v两类错误与显著性水平2008-2009H0:无罪无罪无罪无罪陪审团审判陪审团审判裁决裁决实际情况实际情况无罪无罪有罪有罪无罪无罪正确正确错误错误有罪有罪错误错误正确正确H0 检验检验决策决策实际情况实际情况H0为真为真H0为假为假未拒绝未拒绝H0正确决策正确决策(1 )第第类错类错误误()拒绝拒绝H0第第类错类错误误()正确决策正确决策(1-(1-)假设检验就好像假设检验就好像假设
7、检验就好像假设检验就好像一场审判过程一场审判过程一场审判过程一场审判过程统计检验过程统计检验过程统计检验过程统计检验过程决策结果决策结果2008-2009 错误和 错误的关系 你不能同时减你不能同时减少两类错误少两类错误!和和和和 的关系就像的关系就像的关系就像的关系就像翘翘板,翘翘板,翘翘板,翘翘板,小小小小 就就就就大,大,大,大,大大大大 就小就小就小就小2008-2009影响 错误的因素1.总体参数的真值随着假设的总体参数的减少而增大2.显著性水平 当减少时增大3.总体标准差 当 增大时增大4.样本容量 n当 n 减少时增大2008-2009显著性水平(significant leve
8、l)1.是一个概率值2.原假设为真时,拒绝原假设的概率被称为抽样分布的拒绝域3.表示为(alpha)常用的 值有0.01,0.05,0.104.由研究者事先确定2008-2009假设检验中的小概率原理假设检验中的小概率原理什么是小概率?什么是小概率?1.在一次试验中,一个几乎不可能发生的事件发生的概率2.在一次试验中小概率事件一旦发生,我们就有理由拒绝原假设3.小概率由研究者事先确定2008-20091.根据样本观测结果计算得到的,并据以对原假设和备择假设作出决策的某个样本统计量2.对样本估计量的标准化结果原假设H0为真点估计量的抽样分布 检验统计量检验统计量(test statistic)v
9、统计量与拒绝域统计量与拒绝域标准化的检验统计量标准化的检验统计量 2008-2009拒绝域拒绝域v能够拒绝原假设的检验统计量的所有可能取值的集合。v由显著性水平围成的区域。v如果检验统计量的具体数值落在了拒绝域内,就拒绝原假设,否则就不拒绝原假设。v根据给定的显著性水平确定的拒绝域的边界值,称为临界值。(查表所得)2008-2009显著性水平和拒绝域抽样分布抽样分布抽样分布抽样分布0 0 0临界值临界值临界值临界值临界值临界值临界值临界值 /2/2 /2/2/2 样本统计量样本统计量样本统计量拒绝拒绝拒绝拒绝H H0 0拒绝拒绝拒绝拒绝H H0 01-1-1-置信水平置信水平置信水平置信水平置
10、信水平置信水平双侧检验 2008-20090临界值临界值临界值临界值 /2/2 /2/2 样本统计量样本统计量拒绝拒绝H H0 0拒绝拒绝H0抽样分布抽样分布1-1-置信水平置信水平置信水平置信水平双侧检验双侧检验 2008-20090 0临界值临界值临界值临界值临界值临界值 /2/2 /2/2 样本统计量样本统计量拒绝拒绝H H0 0拒绝拒绝拒绝拒绝HH0 0抽样分布抽样分布1-1-置信水平置信水平2008-2009单侧检验单侧检验 0 0临界值临界值 样本统计量样本统计量样本统计量样本统计量拒绝拒绝H0抽样分布抽样分布1-1-置信水平置信水平2008-2009a)左侧检验左侧检验 0 0
11、0临界值临界值临界值临界值 样本统计量样本统计量样本统计量样本统计量拒绝拒绝拒绝拒绝H HH0 00抽样分布抽样分布抽样分布抽样分布1-1-1-置信水平置信水平置信水平置信水平观察到的样本统计量观察到的样本统计量观察到的样本统计量观察到的样本统计量2008-20090 0 0临界值临界值临界值临界值临界值临界值 样本统计量样本统计量样本统计量样本统计量样本统计量样本统计量拒绝拒绝拒绝拒绝拒绝拒绝H HH0 00抽样分布抽样分布1-1-1-置信水平置信水平2008-2009b)右侧检验右侧检验 0 0 0临界值临界值临界值临界值 样本统计量样本统计量样本统计量样本统计量拒绝拒绝拒绝拒绝拒绝拒绝H
12、 HH0 00抽样分布抽样分布抽样分布抽样分布1-1-1-置信水平置信水平置信水平置信水平观察到的样本统计量观察到的样本统计量观察到的样本统计量观察到的样本统计量2008-20090 0 0临界值临界值临界值临界值 样本统计量样本统计量样本统计量样本统计量抽样分布抽样分布1-1-1-置信水平置信水平拒绝拒绝拒绝H HH0 002008-2009决策规则1.给定显著性水平,查表得出相应的临界值z或z/2,t或t/22.将检验统计量的值与水平的临界值进行比较3.作出决策双侧检验:I统计量I 临界值,拒绝H0左侧检验:统计量 临界值,拒绝H02008-2009什么是P 值(P-value)1.在原假
13、设为真的条件下,检验统计量的观察值大于或等于其计算值的概率双侧检验为分布中两侧面积的总和2.反映实际观测到的数据与原假设H0之间不一致的程度3.被称为观察到的(或实测的)显著性水平4.决策规则:若p值,拒绝 H0v利用利用P值值进行决策进行决策2008-2009双侧检验的双侧检验的P值值 /2 2 /2 2 Z Z拒绝拒绝H0拒绝拒绝H00 0 0临界值临界值临界值临界值临界值临界值计算出的样本统计量计算出的样本统计量计算出的样本统计量计算出的样本统计量计算出的样本统计量计算出的样本统计量计算出的样本统计量计算出的样本统计量临界值临界值临界值临界值临界值临界值P P 值值值值1/21/2P P
14、 值值值值1/21/21/21/22008-2009左侧检验的左侧检验的P值值0 0 0临界值临界值临界值临界值临界值临界值 样本统计量样本统计量样本统计量样本统计量样本统计量样本统计量拒绝拒绝拒绝拒绝拒绝拒绝H HH0 00抽样分布抽样分布1-1-1-置信水平置信水平计算出的样本统计量计算出的样本统计量计算出的样本统计量计算出的样本统计量P P 值值值值2008-2009右侧检验的右侧检验的P值值0 0 0临界值临界值临界值临界值 拒绝拒绝拒绝拒绝HH00抽样分布抽样分布抽样分布抽样分布1-1-1-置信水平置信水平置信水平置信水平计算出的样本统计量计算出的样本统计量计算出的样本统计量计算出的
15、样本统计量P P 值值值值2008-2009假设检验步骤的总结假设检验步骤的总结1.陈述原假设和备择假设2.从所研究的总体中抽出一个随机样本3.确定一个适当的检验统计量,并利用样本数据算出其具体数值4.确定一个适当的显著性水平,并计算出其临界值,指定拒绝域5.将统计量的值与临界值进行比较,作出决策统计量的值落在拒绝域,拒绝H0,否则不拒绝H0也可以直接利用P值值作出决策2008-20096.2 总体均值的检验总体均值的检验v大样本的检验方法大样本的检验方法v小样本的检验方法小样本的检验方法2008-2009一个总体参数的检验一个总体参数的检验z 检验检验(单尾和双尾单尾和双尾)t 检验检验(单
16、尾和双尾单尾和双尾)z 检验检验(单尾和双尾单尾和双尾)2 检验检验(单尾和双尾单尾和双尾)均值均值一个总体一个总体比例比例方差方差2008-2009总体均值的检验总体均值的检验(作出判断作出判断)是否已是否已知知小小小小小小样本容量样本容量n大大大大大大 是否已是否已知知否否否否否否 t 检验检验否否否否否否z 检验检验是是是是是是z 检验检验 是是是是是是z 检验检验2008-2009总体均值的检验(大样本)假定条件正态总体或非正态总体大样本(n30)使用z检验统计量 2 已知:2 未知:v大样本的检验方法大样本的检验方法)1,0(0Nnxz-=)1,0(0Nnsxz-=2008-2009
17、总体均值的检验总体均值的检验(2 已知已知)【例例】一种罐装饮料采用自动生产 线 生 产,每 罐 的 容 量 是255ml,标准差为5ml。为检验每罐容量是否符合要求,质检人员在某天生产的饮料中随机抽取了40罐进行检验,测得每罐平均容量为255.8ml。取显著性水平=0.05,检验该天生产的饮料容量是否符合标准要求?双侧检验双侧检验绿色绿色绿色绿色健康饮品健康饮品绿色绿色绿色绿色健康饮品健康饮品2552552552552552552008-2009由题已知由题已知H0:=255H1:255 =0.05n=40=5 临界值临界值(c):检验统计量检验统计量:z z01.961.96-1.96-1
18、.960.025拒绝拒绝 H0拒绝拒绝 H00.025决策决策:结论结论:不拒绝不拒绝H H0 0样样本本提提供供的的证证据据表表明明:该该天天生生产的饮料符合标准要求产的饮料符合标准要求 01.14052558.2550=-=-=nxz2008-2009 用Excel计算P 值第第1步步:进入Excel表格界面,直接点击“f(x)”(粘贴函数)第第2步:步:在函数分类中点击“统计”,并在函数名的 菜单下选择“NORMSDIST”,然后确定第第3步:步:将 z 的绝对值1.01录入,得到的函数值为 0.843752345 P值=2(1-0.843752345)=0.312495 P值远远大于,
19、故不拒绝H02008-2009【例】【例】(2 未知)未知)一一种种机机床床加加工工的的零零件件尺尺寸寸绝绝对对平平均均误误差差允允许许值值为为1.35mm。生生产产厂厂家家现现采采用用一一种种新新的的机机床床进进行行加加工工以以期期进进一一步步降降低低误误差差。为为检检验验新新机机床床加加工工的的零零件件平平均均误误差差与与旧旧机机床床相相比比是是否否有有显显著著降降低低,从从某某天天生生产产的的零零件件中中随随机机抽抽取取50个个进进行行检检验验。利利用用这这些些样样本本数数据据,检检验验新新机机床床加加工工的的零零件件尺尺寸寸的的平平均均误误差差与与旧旧机机床床相相比比是是否否有有显显著
20、著降降低?低?(=0.01)左侧检验左侧检验50个零件尺寸的误差数据个零件尺寸的误差数据(mm)1.261.191.310.971.811.130.961.061.000.940.981.101.121.031.161.121.120.951.021.131.230.741.500.500.590.991.451.241.012.031.981.970.911.221.061.111.541.081.101.641.702.371.381.601.261.171.121.230.820.86总体均值的检验总体均值的检验(2 未知未知)2008-2009由题已知由题已知H0:1.35H1:1.3
21、5 =0.01n=50临界值临界值(c):检验统计量检验统计量:拒绝拒绝H0新新机机床床加加工工的的零零件件尺尺寸寸的的平平均均误误差与旧机床相比有显著降低差与旧机床相比有显著降低决策决策:结论结论:-2.33-2.33z z0 0拒绝拒绝H00.010.016061.250365749.035.13152.1-=-=z2008-20090 0 0-2.33-2.33-2.33 =0.05=0.05=0.05z z z拒绝拒绝拒绝拒绝H HH0 00抽样分布抽样分布1-1-1-计算出的样本统计量计算出的样本统计量计算出的样本统计量计算出的样本统计量=-2.6061=-2.6061=-2.606
22、1=-2.6061P P 值值值值P PP=0.0045790.0045790.004579 2008-2009用Excel计算P 值(z检验)第第1步:步:进入Excel表格界面,直接点击“f(x)”(粘贴函数)第第2步:步:在函数分类中点击“统计”,并在函数名的菜单下 选择“ZTEST”,然后确定第第3步:步:在所出现的对话框Array框中,输入原始数据所 在区域;在X后输入参数的某一假定值(这里为 1.35);在Sigma后输入已知的总体标准差(若未 总体标准差未知则可忽略不填,系统将自动使用 样本标准差代替)第第4步:步:用1减去得到的函数值0.995421023 即为P值 P值=1-
23、0.995421023=0.004579 P值 5200 =0.05n=36临界值临界值(c):检验统计量检验统计量:拒绝拒绝H0 (P P =0.000088 =0.000088 =0.05)=0.05)改良后的新品种产量有显著提高改良后的新品种产量有显著提高 决策决策:结论结论:z z0拒绝拒绝H00.050.051.6451.64575.33612052005275=-=z2008-2009抽样分布抽样分布抽样分布抽样分布P P=0.0000880.000088 0 0 01.6451.645 0.050.050.05拒绝拒绝拒绝拒绝H HH0 001-1-1-计算出的样本统计量计算出的
24、样本统计量计算出的样本统计量计算出的样本统计量=3.75=3.75=3.75=3.75P P P 值值值值2008-2009总体均值(大样本)的检验方法的总结总体均值(大样本)的检验方法的总结假设假设双侧检验双侧检验左左侧检验侧检验右右侧检验侧检验假设形式假设形式H0:=0H1:0H0:0H1:0统计量统计量 已知:未知:拒绝域拒绝域P值决策值决策拒绝H02008-2009总体均值的检验总体均值的检验(小样本小样本)假定条件总体服从正态分布小样本(n 30)检验统计量 2 已知:2 未知:v小样本的检验方法小样本的检验方法)1,0(0Nnxz-=)1(0-=ntnsxt2008-2009总体均
25、值(总体均值(小小样本)检验方法的总结样本)检验方法的总结假设假设双侧检验双侧检验左左侧检验侧检验右右侧检验侧检验假设形式假设形式H0:=0H1:0H0:0H1:0统计量统计量 已知:未知:拒绝域拒绝域P值决策值决策拒绝H0注注:已知的拒绝域同大样本已知的拒绝域同大样本2008-2009【例例】一种汽车配件的平均长度要求为12cm,高于或低于该标准均被认为是不合格的。汽车生产企业在购进配件时,通常是经过招标,然后对中标的配件提供商提供的样品进行检验,以决定是否购进。现对一个配件提供商提供的10个样本进行了检验。假定该供货商生产的配件长度服从正态分布,在0.05的显著性水平下,检验该供货商提供的
26、配件是否符合要求?10个零件尺寸的长度个零件尺寸的长度(cm)12.210.812.011.811.912.411.312.212.012.32008-2009由题已知由题已知H0:=12H1:12 =0.05df=10-1=9临界值临界值(c):检验统计量检验统计量:不拒绝不拒绝H0该供货商提供的零件符合要求该供货商提供的零件符合要求 决策:决策:结论:结论:t02.262-2.2620.025拒绝拒绝 H H0 0拒绝拒绝 H00.0257035.0104932.01289.11-=-=t2008-2009用Excel计算P 值(t 检验)第第1步:步:进入Excel表格界面,直接点击“f
27、(x)”(粘贴函数)第第2步:步:在函数分类中点击“统计”,并在函数名的菜单 下选择“TDIST”,然后确定第第3步:步:在出现对话框的X栏中输入计算出的t的绝对值 0.7053,在Deg-freedom(自由度)栏中输入 本例的自由度9,在Tails栏中输入2(表明是双 侧检验,如果是单侧检验则在该栏输入1)第第4步:步:P值=0.498469786 P值=0.05,故不拒绝H0 2008-20096.3 总体比例的检验总体比例的检验v大样本的检验方法大样本的检验方法2008-2009总体比例检验总体比例检验假定条件总体服从二项分布可用正态分布来近似(大样本)检验的z 统计量 0 0为假设的
28、总体比例为假设的总体比例)1,0()1(000Nnpzppp-=2008-2009总体比例检验检验方法的总结总体比例检验检验方法的总结假设假设双侧检验双侧检验左左侧检验侧检验右右侧检验侧检验假设形式假设形式H0:=0H1:0H0:0H1:0统计量统计量拒绝域拒绝域P值决策值决策拒绝H0npz)1(000ppp-=2008-2009【例例】一种以休闲和娱乐为主题的杂志,声称其读者群中有80%为女性。为验证这一说法是否属实,某研究部门抽取了由200人组成的一个随机样本,发现有146个女性经常阅读该杂志。分别取 显 著 性 水 平=0.05和=0.01,检验该杂志读者群中女性的比例是否为80%?它们
29、的值各是多少?双侧检验2008-2009H0:=80%H1:80%=0.05n=200临界值临界值(c):检验统计量检验统计量:拒绝H0(P=0.013328 =0.01)该杂志的说法属实 决策决策:结论结论:z z0 02.582.58-2.58-2.580.0250.025拒绝 H0拒绝 H00.0250.025475.2200)80.01(80.080.073.0-=-=z2008-2009本章小节1.假设检验的基本问题假设检验的基本问题 2.总体均值的检验总体均值的检验3.总体比例的检验总体比例的检验4.用用Excel进行检验进行检验5.利用利用p值进行检验值进行检验2008-2009