2022年探索勾股定理(一)教案.doc

上传人:de****x 文档编号:56380335 上传时间:2022-11-01 格式:DOC 页数:6 大小:25KB
返回 下载 相关 举报
2022年探索勾股定理(一)教案.doc_第1页
第1页 / 共6页
2022年探索勾股定理(一)教案.doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《2022年探索勾股定理(一)教案.doc》由会员分享,可在线阅读,更多相关《2022年探索勾股定理(一)教案.doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、探究勾股定理(一)教案 篇一:探究勾股定理优秀 12 3 1小明用火柴棒摆直角三角形,已经明白他摆两条直角边分别用了6根和8根火柴棒,他摆完这个直角 三角形共用火柴棒()根 A20 B. 14 C. 24 D. 30 2在RtABC中,斜边AB?1,那么AB2?BC2?AC2?( ) A2 B. 4 C. 6D. 8 3如图,阴影部分是一个正方形,那么此正方形的面积为( ) A8 B. 64 C. 16 D. 32 4直角三角形的两条直角边的比为3:4,斜边长25cm,那么斜边上的高为( ) A10cm B. 12cm C. 15cmD. 20cm 15 第3题 4篇二:探究勾股定理一 教学设

2、计 第一章 勾股定理 1探究勾股定理(一) 一、教材分析 (一)教材的地位和作用 这节课是九年制义务教育课程标准实验教科书,北师大版八年级 第一章第一节探究勾股定理第一课时。在本节课往常,学生学习了(三角形、正方形、梯形)一些图形的面积公式,还学习了三角形全等的断定和性质、直角三角形的有关性质以及整式运算中的完全平方公式(ab)2=a22ab+b2。学生在这些原有的认知水平根底上,探究直角三角形的又一条重要性质勾股定理。我国是最早理解勾股定理的国家之一,这一定理提示了直角三角形三边之间的数量关系,为以后学习解直角三角形和二次根式奠定根底,在有关的物理计算中也离不开勾股定理,它在生活中的用处特别

3、大。 (二)、学生起点分析 八年级学生已经具备一定的观察、归纳、探究和推理的才能且他们勤于考虑、乐于探究。(按照以上教材地位和学生情况,再结合课程标准的要求,我制定如下教学目的) 三、教学目的分析 (二)、教学目的 1、知识与技能目的 用数格子的方法体验勾股定理的探究过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进展简单的计算和实际运用 2、过程与方法目的 在探究勾股定理的过程中,让学生经历“观察猜测归纳验证”的数学过程,并体会数形结合和从特别到一般的数学思想方法。 3、情感态度与价值观目的 (1)在探究勾股定理的过程中,培养学生的合作交流认识和探究精神,增进学习数

4、学的决心,感受数学之美。 (2)利用远程教育资源介绍中国古代勾股方面的成就,表达数学的文化价值。 (三)、教学重点及难点(按照课程标准的要求,以及为学生在今后处理有关几何征询题。因而,本节课的教学重点和难点是) 【教学重点】勾股定理及勾股定理的证明与简单运用 【教学难点】用拼图求面积的方法证明勾股定理 【难点成因】在小学,他们已学习了一些几何图形面积的计算方法(包括割补法)但运用面积法和割补思想处理征询题的认识和才能还远远不够,因而构成了难点。 【教具】老师预备: 直角三角形 学生预备:四个全等的直角三角形 二、教学方法及教学手段的选择 针对八年级学生的认知构造和心理特征,本节课我选择的方法是

5、:引导探究、讨论觉察法(其意图是由浅到深,由特别到一般的提出征询题,与学生合作交流,这种教学理念紧随新课改理念)。 三、学法指导 老师有组织、有目的、有针对性的引导学生并一同参与到学习活动中,鼓舞学生采纳自主探究与合作交流相结合(其意图是让学生真正成为学习的主人)。 四、教学过程 本节课设计了六个教学环节:第一环节:创设情境,探究新知;第二环节:猜测结论,获取新知;第三环节:归纳验证,完善新知;第四环节:处理征询题,应用新知;第五环节:课堂小结,稳定新知第六环节:布置作业,拓展新知 (一):创设情境,引入新课 先让学生阅读教科书第一页的引言。我再讲个小故事,我国著名数学家华罗庚教授在数学的用场

6、与开展一文中假设我们宇宙航船到另一个星球上,为什么带“数”和“数形关系”两个图形?(意图是激发学生的探究欲望,让学生感到“有趣”、“有意思”的状态下进入学习过程)。数学家曾建议用“勾股定理”的图来作为与“外星人”联络的信号,从而产生了勾股数(3、4、5)(5、12、13)引入新课(展示课件,并作简单的介绍)让学生听说“勾”与“ 股”(展示课件),(意图:形象的说明勾与股,强调:勾与股互相垂直;几何图形中勾、股只适宜在直角三角形中,顺便引出弦). (二):猜测结论,获取新知 1、特别图形(等腰直角三角形)首先我在网格中建立等腰直角三角形,以小三角形的面积为单位1,学生直截了当看出SA、SB、SC

7、 ,并引导学生猜测结论。 通过观察,归纳觉察: 结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。 意图:这一环节通过图片展示,以直观形象的观察图形,引导学生找到三个正方形面积之间的关系,为下一步用面积计算、验证直角三角形三边关系奠定根底。 2、一般图形(直角三角形) (1)、验证结论 通过刚刚的征询题我们觉察等腰直角三角形三个正方形面积之间的关系,那么这一结论在一般的直角三角形中是否也存在呢? (1)观察下面两幅图: 两图都是勾与股不相等的直角三角形,需要割正方形C才能得到SA、SB、SC,再填表推猜测三者之间存在的关系:SASB=SC得出 结论1

8、以直角三角形两直角边为边长的小正方形的面积的和,等于 以斜边为边长的正方形的面积 【设计意图】为了打破用面积法证明直角三角形三边关系这一难点,本人先让学生小组合作,互相交流,再引导学生用“割”与“补”的方法计算以斜边为边长的正方形的面积,进而得到直角三角形以三边为边的正方形面积之间的关系。由特别(的等腰直角三角形)到一般直角三角形的三边关系进展探究,使直角三角形数与形的关系展示得更为直观,更易被学生接受,更有利于难点的打破,为学生归纳结论打下根底,使学生分析和处理征询题的才能得到提高,符合学生的认知规律。教材编写时也注重了培养学生的动手操作才能和观察分析征询题的才能。 (2)、转换结论 通过三

9、个正方形的面积关系,你能说明直角三角形三边之间的关系论吗?(提出设想,让学生讨论) C A a c b B 篇三:探究勾股定理 教案 教材 义务课程标准实验教科书(北师大版)八年级数学上册第一章第1节P2 P6。 勾股定理提示了直角三角形三边之间的一种美妙关系,将形与数亲切联络起来,在数学的开展和现实世界中有着广泛的作用。本节是直角三角形相关知识的连续,同时也是学生认识无理数的根底,充分表达了数学知识承前启后的严密相关性、连续性。此外,历史上勾股定理的觉察反映了人类出色的智慧,其中蕴涵着丰富的科学与人文价值。 教学目的 1、知识与技能目的:掌握直角三角形三边之间的数量关系,学会用符号表示。学生

10、在经历用数格子与割补等方法探究勾股定理的过程中,体会数形结合的思想,体验从特别到一般的逻辑推理过程。 2、才能目的:通过分层训练,使学生学会纯熟运用勾股定理进展简单的计算,在处理实际征询题中掌握勾股定理的应用技能。 3、情感目的:通过数学史上对勾股定理的介绍,激发学生学数学,爱数学,做数学的情感。使学生从经历定理探究的过程中,感受数学之美,探究之趣。 教学重点、难点 重点:用面积法探究勾股定理,理解并掌握勾股定理。 难点:计算以斜边为边长的大正方形C面积及割补思想的理解与应用。 教学方法 选择引导探究法,采纳“征询题情境-建立模型-解释、应用与拓展”的方式进展教学。 教具预备多媒体课件;假设干

11、张已画好直角三角形的方格纸;剪刀;已剪好的纸片假设干张。 教学过程 一、创设情境,引入新课 (师)请同学们观察动画,我国科学家曾向太空发射勾股图 试图与外星人沟通,在2002年的国际数学家大会上采纳弦图 作为会标,它为什么有如此大的魅力呢?它蕴涵着如何样诱人的 微妙呢?这节课我就带着大家一起探究勾股定理。(设计意图:用一段生动有趣的动画,点燃学生的求知欲,以 景激情,以情激思,引领学生进入学习情境。)二、师生互动,探究新知 活动1:(观察图1)你明白正方形C的面积是多少吗? 你是如何样得出上面结果的呢? (生)独立考虑后交流,采纳直截了当数方格的方法,或者是 分割成几个等腰直角三角形的方法计算

12、正方形C的面积。(多 媒体演示) (过渡语)同学们用数格子的方法觉察了正方形C的面积,那么关于 下面图2中的正方形C, “数方格子”的方法还行得通吗?下面我们 一起来研究。 活动2:(观察你手中方格纸上的图2)正方形C的面积是多少? 你是如何样得出结果的呢? (师)我们用数方格子的方法能算出正方形C的面积吗?参考弦图,你想到什么好方法了吗?(引出“割”法) 大家想一想还有没有其它方法呢?受“割”法的启示,我们能通过“补”的方法得出结论吗? (生)独立考虑,在预先预备的方格纸上将图形剪一剪、拼一拼,用分割成四个全等直角三角形的方法或将正方形C补成边长为整数的大正方形的方法求出斜边上的正方形C的面

13、积。接着将成果与同伴交流,学生代表。 活动3: 分工1:(如图3)请每个小组两名组员试着将手中的已剪好的四个全等的四边形拼成正方形B。 分工2:(如图4)另两名组员再将同样的四个四边形和正方形A一起拼成一个大正方形C。 A 图 图4 考虑: 1、等腰直角三角形(师)观察图5,关于等腰直角三角形,将正方形A、正方形B和已计算的正方形C的面积填入下表,它们的面积有什么关系? 结论:正方形A面积 + 正方形B面积 = 正方形C面积 2、直角边长为整数的一般直角三角形 (师)观察图6,直角边长为整数的一般直角三角形,正方形A、正方形B、正方形C面积又有什么关系呢? 结论:正方形A面积 + 正方形B面积

14、 = 正方形C面积 3、任意直角三角形 (师)那么,关于直角边长不是整数的一般直角三角形上面的结论还成立吗?(出示图7) 生合作:试着将已拼好的正方形B和大正方形C同正方形A拼成如图7所示的图形。 A B A C C 图7 图8 (师)同学们从活动中都得出正方形A、正方形B、正方形C面积有什么关系? (生)小组交流,学生代表发言。 结论:正方形A面积 + 正方形B面积 = 正方形C面积 师点拨:这里的四个全等的四边形是正方形B按如图8所示的方法分割的。 师小结:通过以上活动,我们觉察以任意直角三角形的两条直角边为边长的正方形面积之和都等于以斜边为边长的正方形面积。 (师)下面我们运用几何画板进

15、一步验证上面的结论(改变直角三角形的三边长度,同学们觉察结论仍然成立)。 4、正方形面积与直角三角形三边关系 (师)假设我们设两条直角边长分别为a、b,斜边为c,你能用三角形的边长来表示这三个正方形的面积吗?(将正方形的面积和三角形的边长联络起来) (生)正方形A面积为a,正方形B面积为b,正方形C面积为c。 (师)你觉察直角三角形三边长度之间有什么联络? (生)分组讨论,交流并发言。 结论:由于 正方形A面积 + 正方形B面积 = 正方形C面积,因而 a+ b= c即 两条直角边的平方和等于斜边的平方。 5、认识直角三角形三边关系 2 2 2 2 2 2(师)利用几何画板展示任意直角三角形,

16、我们觉察:不管三边长度如何变化,两条直角边的平方和总是等于斜边平方。 (师)请将上述结论用数学语言表述并符号化。 (生)学生讨论,交流并发言。 假设直角三角形两直角边分别为a,b,斜边为c,那么a + b = c 即直角三角形两直角边的平方和等于斜边的平方。 (师)在中国古代,人们把弯曲成直角的手臂的上半部分称为勾,下半部分称为 股。我国古代学者把直角三角形较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”。因而我国古代把上面的定理称为“勾股定理”。再请学生看一看,读一读:早在三千多年前周朝数学家商高就提出勾三、股四、弦五,并在后来被记载在中国古代著名数学著作周髀算经之中,一千多年

17、后西方的毕达哥拉斯证明了此定理。(设计意图:在探究定理的过程中, 为了突出本节重点,处理难点,我将按下面 两个层次设计探究过程。第一方面由等腰直角三角形到一般直角三角形三边关系的研究,表达从特别到一般的方法,第二方面引导学生用割、补等方法计算正方形C面积到用拼图的方法探究直角三角形三边关系,展示由简单到复杂的思想,探究出勾股定理。) 三、回归生活,应用新知 要求:面向全体学生,部分学生可选择从本人需要的层次做起。 A层: 1、 在ABC中,C=90(1)假设a=8,b=6,那么假设c=20,b=12,。 2、假设直角三角形中,有两边长是3和4,那么第三边长的平方为() A25 B 14 C 7D 7或25 3、情景探究 小明的妈妈买来一部29英寸(74厘米)的电视机,小明量了电 视机的荧屏后,觉察荧屏只有58厘米长46厘米宽,他认为售货员搞 错了对不对? (58=336446=211674.035480) 4、一根旗杆在离地9米处断裂,旗杆顶部落在离旗杆底部12米处,旗杆折断之前 有多高? (设计意图:本层是根底性习题,强化学生掌握在直角三角形中已经明白任意两边,都能利用勾股定理求出第三边的重要解题方法,以及定理的实际应用。以当堂检测学生 2 2 2 2 2 2

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 施工组织

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁