《小升初专题讲解及训练:正比例和反比例.doc》由会员分享,可在线阅读,更多相关《小升初专题讲解及训练:正比例和反比例.doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、小学数学总复习专题讲解及训练-正比例和反比例主要内容正比例和反比例学习目标1、使学生结合实际情境认识成正比例和反比例的量,能根据正、反比例的意义判断两种相关联的量是否成正比例或反比例。2、使学生初步认识正比例的图像是一条直线,能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。3、使学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。4、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动地参与学习活动的习惯,提
2、高学好数学的信心。考点分析1、两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。如果用字母和分别表示两种相关联的量,用表示它们的比值,正比例关系可以用这样的式子来表示: = K(一定)。2、用“描点法”可以得到正比例的图像,正比例的图像是一条直线。对照图像,能根据一种量的值,估计另一种量相对应的值。3、两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。如果用字母和分别表示两种相关联的量,用
3、表示它们的积,反比例关系可以用这样的式子来表示: = K(一定)。4、两个变量的比值一定,这两个变量成正比例;两个变量的积一定,这两个变量成反比例;没有上述两种关系,这两个变量不成比例。典型例题例1、(正比例的意义)一列火车行驶的时间和路程如下表。这两种量有什么关系?时间/时123456路程/千米120240360480600720分析与解:(1)从上表可以看出,表中有时间和路程两种量。(2)从左往右看,时间扩大,路程也扩大;从右往左看,时间缩小,路程也缩小。所以它们是两种相关联的量。(3)路程和时间的比值始终不变, = 120, = 120, = 120这个比值就是火车的行驶速度。通过观察和
4、计算,我们对路程和时间的关系有两点发现:第一点路程和时间是两种相关联的量,也就是时间变化,路程也随着变化;第二点路程和对应的时间的比的比值(也就是速度)是一定的,有这样的关系: = 速度(一定)。具备了这两个条件,我们就可以得到结论:行驶的路程和时间成正比例关系;行驶的路程和时间成正比例的量。点评:判断两种量是不是成正比例,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的比值是否一定。不要省去任何一步。如果用字母和分别表示两种相关联的量,用表示它们的比值,正比例关系可以用这样的式子来表示: = K(一定)。例2、(判断是否成正比例
5、)练习本的单价一定,买练习本的数量和总价是不是成正比例?为什么?分析与解:根据正比例的意义,看两个变量的比值是否一定,如果两个变量的比值一定,那么这两个变量就成正比例,反之,则不成正比例。买练习本的数量和总价是两种相关联的量,它们与练习本的单价有下面的关系: = 练习本的单价(一定)所以练习本的数量和总价成正比例。例3、(正比例的图像)磁悬浮列车匀速行驶时,路程与时间的关系如下。时间/分123456 7路程/千米7142128354249(1)图中的点A表示时间为1分钟时,磁悬浮列车驶过的路程为7千米。请你试着描出其他各点。(2)连接各点,它们在一条直线上吗?(3)根据图像判断,列车运行2分半
6、钟时,行驶的路程是多少千米?行驶30千米大约需要几分钟? 路程/千米42 35 28 21 14 7 A0 1 2 3 4 5 6 7 时间/分分析与解:根据提供的各组数据描出图像的许多个点,再依次连成直线。路程和时间相对应的数的比值都是7,即速度一定,路程和时间成正比例,图像是一条直线。对照图像,可以根据时间的值估计出路程的值,也可以根据路程的值估计出时间的值,估计时允许有一定的出入。(1)描点、连线如图。 路程/千米42 35 28 21 14 7 A0 1 2 3 4 5 6 7 时间/分(2)在一条直线上,因为路程和时间成正比例,正比例的图像是一条直线。(3)根据图像,列车运行2分半钟
7、时,行驶的路程是17.5千米;行驶30千米大约需要4.3分钟。例4、(辨析)圆的周长和直径成正比例,圆的面积和半径成正比例?分析与解:圆的周长和直径成正比例,而圆的面积和半径却不成正比例。可列表判断。半径/cm123456直径/cm24681012周长/cm6.2812.5618.8425.1231.437.68面积/cm3.1412.5628.2650.2478.5113.04圆的周长和直径的相对应的数的比值都是3.14,所以圆的周长和直径成正比例。而圆的面积和半径的相对应的数的比值是变化的,所以圆的面积和半径不成正比例。圆的周长和直径成正比例,圆的面积和半径却不成正比例。例5、(反比例的意
8、义)下表是王师傅加工一批零件时,每小时加工零件个数随时间变化的情况。这两种量有什么关系?每小时加工零件的个数/个20304060 80加工的时间/时128643分析与解:(1)从上表可以看出,表中有每小时加工零件的个数和加工的时间两种量。(2)从左往右看,每小时加工零件的个数扩大,加工的时间反而缩小;从右往左看,每小时加工零件的个数缩小,加工的时间反而扩大。所以它们是两种相关联的量。(3)每小时加工零件的个数和相对应的加工的时间的积都始终不变,如20 12 = 240,30 8 = 240,40 6 = 240而这个积就是这批零件的总个数。通过观察和计算,我们发现:每小时加工零件的个数和加工的
9、时间是两种相关联的量,每小时加工零件的个数随着加工的时间变化而变化,但无论它们怎么变化,相对应的积是一定的,有这样的关系:每小时加工零件的个数 加工的时间 = 零件的总个数(一定)。所以每小时加工零件的个数和加工的时间成反比例的量,它们之间的关系叫做反比例关系。点评:判断两种量是不是成反比例,和正比例一样,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的乘积是否一定,进行判断。不要省去任何一步。如果用字母和分别表示两种相关联的量,用表示它们的比值,正比例关系可以用这样的式子来表示: = K(一定)。例6、(判断是否成反比例)总产量
10、一定,每公顷的产量和公顷数是不是成反比例?为什么?分析与解:根据反比例的意义,看两个变量的乘积是否一定,如果两个变量的积一定,那么这两个变量就成反比例,反之,则不成反比例。每公顷的产量和公顷数是两种相关联的量,它们与总产量有下面的关系:每公顷的产量 公顷数 = 总产量(一定)所以每公顷的产量和公顷数成反比例。例7、(辨析)和一定,一个加数和另一个加数成反比例。分析与解:判断两个变量是否成反比例,关键是看两个变量的乘积是否一定。很明显,和一定,两个加数的积是变化的,所以它们不成反比例。和一定,一个加数和另一个加数不成反比例。因为它们的积不一定。点评:有些相关联的量,虽然也是一种量变化,另一种量也
11、随着变化,但它们不是积一定,也 不是比值一定,它们就不成比例。像这样的还有:人的跳高高度和身高;减数一定,被减数和差等。例8、(综合题1)(1)长方形的面积一定,长和宽成反比例吗?为什么?(2)长方形的周长一定,长和宽成反比例吗?为什么?分析与解:判断时可以用列表的方式列举数据,也可以根据计算的公式来推导。(1)因为长方形的长 宽 = 长方形的面积(一定),所以长和宽成反比例。(2)长方形的周长 = (长+宽) 2 ,长方形的周长一定,长+宽的和一定,但不是积一定,所以长和宽不成反比例。例9、(综合题2)分别说明大米的总千克数、每天吃的千克数和天数这三种量中,每两种量的比例关系。(1)大米的总
12、千克数一定,每天吃的千克数和天数;(2)每天吃的千克数一定,大米的总千克数和天数;(3)天数一定,大米的总千克数和每天吃的千克数。分析与解:在大米的总千克数、每天吃的千克数和天数这三种量中,当某一种量一定时,另外两种量可能成正比例关系,也可能成反比例关系。可以根据数量关系式来判断。(1)因为每天吃的千克数 天数 = 大米的总千克数(一定),所以大米的总千克数一定时,每天吃的千克数和天数成反比例。(2)因为 = 每天吃的千克数(一定),所以每天吃的千克数一定时,大米的总千克数和天数成正比例。(3)因为 = 天数(一定),所以天数一定时,大米的总千克数和每天吃的千克数成正比例。模拟试题1、仔细观察
13、每张表格,思考表格中两种量之间有关系吗?有什么关系?为什么?表格1数量/本13681020总价/元41224324080表格2单价/元1.523456总价/元6812162024表格3 用60元钱购买笔记本,笔记本的单价和可以购买的数量如下表:单价/元1.523456数量/本4030201512102、用一批纸装订练习本,每本25页,可以装订400本。如果要装订500本,每本有X页。题中( )量一定,关系式:( )( )( )(一定),( )和( )成( )比例。3、一间会客室地面用边长0.3米的正方形地砖铺,需要640块。如果改用边长0.4米的正方形地砖,需要Y块。题中( )量一定,关系式:
14、( )( )( )(一定),( )和( )成( )比例。4、在圆柱的侧面积、底面周长、高这三种量中 当底面周长一定时,( )与( )成( )比例; 当高一定时,( )与( )成( )比例; 当侧面积一定时,( )与( )成( )比例。5、在被除数、除数、商这三种量中, 当( )一定时,( )与( )成正比例; 当( )一定时,( )与( )成反比例;6、当 a b c( a、b、c 为三种量,且均不为0)。 ( )一定,( )与( )成( )比例;( )一定,( )与( )成( )比例;( )一定,( )与( )成( )比例;7、判断。(1)、工作总量一定,工作效率和工作时间成反比例。( )(
15、2)、图上距离和实际距离成正比例。( )(3)、X和Y表示两种变化的相关联的量,同时5X7Y0,X和Y不成比例。( )(4)、分数的大小一定,它的分子和分母成正比例。 ( )(5)、在一定的距离内,车轮周长和它转动的圈数成反比例。 ( )(6)、两种相关联的量,不成正比例,就成反比例。 ( )(7)订阅小学数学评价手册的份数与所需钱数成正比例。 ( )(8)在400米赛跑中,跑步的速度和所用时间成反比例。 ( )(9)工作总量一定,已完成的量和未完成的量成反比例。 ( )(10)正方体的棱长和体积成正比例。 ( )(11)被除数一定,除数和商成反比例。 ( )(12)圆的周长和它的直径成正比例
16、。 ( )8、判断下面每题中的两种量是不是成比例,如果成比例,成什么比例。(1)、装配一批电视机,每天装配台数和所需的天数( )。(2)、正方形的边长和周长( )。(3)、水池的容积一定,水管每小时注水量和所用时间( )。(4)、房间面积一定,每块砖的面积和铺砖的块数( )。(5)、在一定时间里,加工每个零件所用的时间和加工零件的个数( )。(6)、在一定时间里,每小时加工零件的个数和加工零件的个数( )。9、思考:明明三岁时体重12千克,十一岁时体重44千克。于是小张就说:“明明的体重和身高成正比例。”你认为小张的说法对吗?为什么?10、某造纸厂每小时造纸1.5吨,2小时、3小时各造纸多少吨?(1)把下表填写完整。造纸时间/时1234造纸吨数/吨1.5(2)根据表中的数据,在下图中描出造纸时间和造纸吨数对应的点,再把它们连起来。 吨数/吨6 5 4 3 2 1 0 1 2 3 4 5 6 7 时间/时(3)造纸吨数与造纸时间成正比例吗?为什么?(4)根据图像判断, 5小时造纸多少吨?