2016高考立体几何证明垂直的专题训练.pdf

上传人:Q****o 文档编号:55651322 上传时间:2022-10-31 格式:PDF 页数:6 大小:220.80KB
返回 下载 相关 举报
2016高考立体几何证明垂直的专题训练.pdf_第1页
第1页 / 共6页
2016高考立体几何证明垂直的专题训练.pdf_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《2016高考立体几何证明垂直的专题训练.pdf》由会员分享,可在线阅读,更多相关《2016高考立体几何证明垂直的专题训练.pdf(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、1 P E D C B A 高中立体几何证明垂直的专题训练(1)通过“平移”,根据假设/,abba且平面则平面1在四棱锥P-ABCD中,PBC为正三角形,AB 平面 PBC,AB CD,AB=21DC,中点为PDE.求证:AE 平面 PDC.2如图,四棱锥PABCD的底面是正方形,PA 底面 ABCD,PDA=45,点 E为棱 AB的中点求证:平面PCE 平面 PCD;3、如下列图,在四棱锥PABCD中,ABPAD平面,/ABCD,PDAD,E是PB的中点,F是CD上的点,且12DFAB,PH为PAD中AD边上的高。1证明:PHABCD平面;2假设121PHADFC,求三棱锥EBCF的体积;3

2、证明:EFPAB平面.EFBACDP第 2 题图2 4.如 下 列 图,四 棱 锥PABCD底 面 是 直 角 梯 形,2,BAADCDADCDABPA底面ABCD,E为PC的中点,PAAD。证明:BEPDC平面;2利用等腰三角形底边上的中线的性质5、在三棱锥PABC中,2ACBC,90ACB,APBPAB,PCAC求证:PCAB;求二面角BAPC的大小;6、如图,在三棱锥PABC中,PAB是等边三角形,PAC=PBC=90 o证明:ABPCA C B P 文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4

3、ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I

4、6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4

5、ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I

6、6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4

7、ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I

8、6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4

9、ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B53 3利用勾股定理7、如图,四棱锥PABCD的底面是边长为1 的正方形,,1,2.PACD PAPD求证:PA平面ABCD;8、如图 1,在直角梯形ABCD中,CDAB/,ADAB,且121CDADAB现以AD为一边向形外作正方形ADEF,然后沿边AD将正方形ADEF翻折,使平面ADEF与平面ABCD垂直,M为ED的中点,如图21求证:AM平面BEC;2求证:BC平面BDE;_ D_ C_ B_ A_ PMAFBCDEMEDCBAF文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF

10、2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P

11、7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF

12、2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P

13、7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF

14、2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P

15、7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF

16、2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B54 CADBOE9、如图,四面体ABCD 中,O、E分别是 BD、BC的中点,2,2.CACBCDBDABAD1求证:AO平面 BCD;2求异面直线AB与 CD所成角的大小;10、如 图,四 棱 锥SABCD中,BCAB,BCCD,侧 面SAB为 等 边 三 角 形,2,1ABBCCDSD证明:SDSAB平面;求AB与平面SBC所成角的大小文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5

17、文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1

18、C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5

19、文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1

20、C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5

21、文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1

22、C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5

23、文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B55 4利用三角形全等或三角行相似11正方体ABCD A1B1C1D1中O为正方形ABCD的中心,M为BB1的中点,求证:D1O平面MAC.12如图,正三棱柱 ABC A1B1C1的所有棱长都为2,D为 CC-1中点.求证:AB1平面 A1BD;13、.如图,已知正四棱柱ABCDA1B1C1D1中,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F,求证:A1C平面BDE;文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF

24、2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P

25、7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF

26、2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P

27、7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF

28、2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P

29、7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF

30、2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B56 5利用直径所对的圆周角是直角14、如图,AB是圆O的直径,C是圆周上一点,PA平面ABC.1求证:平面PAC平面PBC;2假设D也是圆周上一点,且与C分居直径AB的两侧,试写出图中所有互相垂直的各对平面.OACBPD.15、如图,在四棱锥PABCD中,底面ABCD是矩形,PA平面ABCD以BD的中点O为球心、BD为直径的球面交PD于点M求证:平面ABM平面PCD;OAPBCMD文档编码:CF2I6P7D3I9 HY

31、1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B

32、5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY

33、1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B

34、5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY

35、1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B

36、5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5文档编码:CF2I6P7D3I9 HY1C8N1F4D4 ZF2K4F2S6B5

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁