《全国卷文科数学及复习资料.docx》由会员分享,可在线阅读,更多相关《全国卷文科数学及复习资料.docx(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、绝密启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试文科数学注意事项:1.本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至3页,第卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合,则(A)1,3(B)3,5(C)5,7(D)1,7(2)设的实部及虚部相等,其中a为实数,则(A)3(B)2(C)2(D)3(3)为美化环境,从红、黄、白、紫4种颜色
2、的花中任选2种花种在一个花坛中,学.科.网余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A)(B)(C)(D)(4)的内角A、B、C的对边分别为a、b、c.已知,则(A)(B)(C)2(D)3(5)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为(A)(B)(C)(D)(6)若将函数2 (2)的图像向右平移个周期后,所得图像对应的函数为(A)2(2) (B)2(2) (C)2(2x) (D)2(2x)(7)如图,学.科网某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是(A)17 (B
3、)18 (C)20 (D)28 (8)若ab0,0c1,则(A)(B)(C)(9)函数2x2在2,2的图像大致为(A)(B)(C)(D)(10)执行右面的程序框图,如果输入的1,则输出的值满足(A)(B)(C)(D)(11)平面过正文体A1B1C1D1的顶点A,,则m,n所成角的正弦值为(A)(B)(C)(D)(12)若函数在单调递增,则a的取值范围是(A)(B)(C)(D)第卷本卷包括必考题和选考题两部分.第(13)题第(21)题为必考题,每个试题考生都必须作答.第(22)题第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)设向量(x,1),(1,2),且
4、a b,则.(14)已知是第四象限角,且(+)=,则()=.(15)设直线2a及圆C:x22-22=0相交于A,B两点,若AB=23,则圆C的面积为。(16)某高科技企业生产产品A和产品B需要甲、乙两种新型材料。生产一件产品A需要甲材料1.5,乙材料1,用5个工时;生产一件产品B需要甲材料0.5,乙材料0.3,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元。学.科网该企业现有甲材料150,乙材料90,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元。三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本题满分12分)已知是公差为3的
5、等差数列,数列满足,.(I)求的通项公式;()求的前n项和.18.(本题满分12分)如图,在已知正三棱锥的侧面是直角三角形,6,顶点P在平面内的正投影为点D,D在平面内的正投影为点E,连接并延长交于点G. 学科&网(I)证明G是的中点;()在答题卡第(18)题图中作出点E在平面内的正投影F(说明作法及理由),并求四面体的体积(19)(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100
6、台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),表示购机的同时购买的易损零件数.(I)若=19,求y及x的函数解析式;()若要求学科&网“需更换的易损零件数不大于”的频率不小于0.5,求的最小值;()假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?学科&网(20)(本小题满分12分)在直角坐标系中,直线(t0)交y轴于点M,交
7、抛物线C:于点P,M关于点P的对称点为N,连结并延长交C于点H.(I)求;()除H以外,直线及C是否有其它公共点?说明理由.(21)(本小题满分12分)已知函数fx=x-2ex+a(x-1)2.(I)讨论f(x)的单调性;()若f(x)有两个零点,求的取值范围.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:几何证明选讲如图,是等腰三角形,120.以O为圆心,12为半径作圆.(I)证明:直线及O相切;()点在O上,且四点共圆,证明:.(23)(本小题满分10分)选修44:坐标系及参数方程在直线坐标系中,曲线C1的
8、参数方程为x=acost,y=1+asint,(t为参数,a0)。在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:=4.(I)说明C1是哪种曲线,并将C1的方程化为极坐标方程;()直线C3的极坐标方程为=0,其中0满足0=2,若曲线C1及C2的公共点都在C3上,求a。(24)(本小题满分10分),选修45:不等式选讲已知函数f(x)= 1-23. 学科&网(I)在答题卡第(24)题图中画出 f(x)的图像;()求不等式f(x)1的解集。2016年普通高等学校招生全国统一考试文科数学参考答案第卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求
9、的.(1)B (2) A (3)C (4)D (5)B (6)D(7)A (8)B (9)D (10)C (11)A (12)C第卷二、填空题:本大题共3小题,每小题5分.(13) (14) (15) (16) 三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(I)由已知,得得,所以数列是首项为2,公差为3的等差数列,通项公式为.学科&网()由(I)和 ,得,因此是首项为1,公比为的等比数列.记的前项和为,则(18)(I)因为在平面内的正投影为,所以因为在平面内的正投影为,所以所以平面,故又由已知可得,从而是的中点. ()在平面内,过点作的平行线交于点,即为在平面内的正投影.理由如
10、下:由已知可得,又,所以,因此平面,即点为在平面内的正投影. 学科&网连接,因为在平面内的正投影为,所以是正三角形的中心.由(I)知,是的中点,所以在上,故由题设可得平面,平面,所以,因此由已知,正三棱锥的侧面是直角三角形且,可得 在等腰直角三角形中,可得所以四面体的体积(19)(I)分x19及x.19,分别求解析式;()通过频率大小进行比较;()分别求出您9,20的所需费用的平均数来确定。试题解析:()当时,;当时,所以及的函数解析式为.()由柱状图知,需更换的零件数不大于18的概率为0.46,不大于19的概率为0.7,故的最小值为19.()若每台机器在购机同时都购买19个易损零件,则这10
11、0台机器中有70台在购买易损零件上的费用为3800,20台的费用为4300,10台的费用为4800,因此这100台机器在购买易损零件上所需费用的平均数为.比较两个平均数可知,购买1台机器的同时应购买19个易损零件.(20)()由已知得,.又为关于点的对称点,故,的方程为,代入整理得,解得,因此.所以为的中点,即.()直线及除以外没有其它公共点.理由如下:直线的方程为,即.代入得,解得,即直线及只有一个公共点,所以除以外直线及没有其它公共点.(21) (I)(i)设,则当时,;当时,.所以在单调递减,在单调递增. 学科&网()设,由得1或(-2a).若,则,所以在单调递增.若,则(-2a)1,故
12、当时,;当时,所以在单调递增,在单调递减.若,则,故当时,当时,所以在单调递增,在单调递减.()(i)设,则由(I)知,在单调递减,在单调递增.又,取b满足b0且,则,所以有两个零点.()设0,则所以有一个零点.()设a0,若,则由(I)知,在单调递增.又当时,0,故不存在两个零点;若,则由(I)知,在单调递减,在单调递增.又当时0,故不存在两个零点.综上,a的取值范围为.(22)()设是的中点,连结,因为,所以,在中,即到直线的距离等于圆的半径,所以直线及相切()因为,所以不是四点所在圆的圆心,设是四点所在圆的圆心,作直线学科&网由已知得在线段的垂直平分线上,又在线段的垂直平分线上,所以同理可证,所以(23)(均为参数)为以为圆心,为半径的圆方程为即为的极坐标方程两边同乘得即:化为普通方程为由题意:和的公共方程所在直线即为得:,即为(24)如图所示:当,解得或当,解得或或当,解得或或综上,或或,解集为第 9 页