《2015年全国高中数学联赛试卷解析.pdf》由会员分享,可在线阅读,更多相关《2015年全国高中数学联赛试卷解析.pdf(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1 2015 年全国高中数学联合竞赛A 卷参考答案及评分标准一试说明:1.评阅试卷时,请依据本评分标冶填空题只设。分和香分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9 小题 4 分为一个档次,第 10、11 小题该分为一个档次,不要增加其他中间档次一、填空题:本大题共8 小题,每题8 分,总分值64 分1设ba,为不相等的实数,假设二次函数baxxxf2)(满足)()(bfaf,则)2(f答案:4.解:由己知条件及二次函数图像的轴对称性,可得22
2、aba,即20ab,所以(2)424fab2假设实数满足tancos,则4cossin1的值为答案:2.解:由条件知,sincos2,反复利用此结论,并注意到1sincos22,得)cos1)(sin1(sinsinsincoscossin1222242cossin223已知复数数列nz满足),2,1(1,111nnizzznn,其中 i 为虚数单位,nz表示nz的共轭复数,则2015z答案:2015+1007i解:由己知得,对一切正整数n,有211(1)11(1)2nnnnzznizninizi,于是201511007(2)20151007zzii4在矩形ABCD中,1,2 ADAB,边DC
3、上包含点D、C的动点P与CB延长线上包含点B的动点Q满足条件BQDP,则PQPA的最小值为答案34解:不妨设A(0,0),B(2,0),D(0,l)设P 的坐标为t,l)其中02t,则由|DPBQ得 Q 的坐标为 2,-t),故(,1),(2,1)PAtPQtt,因此,22133()(2)(1)(1)1()244PA PQtttttt当12t时,min3()4PA PQ5在正方体中随机取三条棱,它们两两异面的概率为答案:255解:设正方体为ABCD-EFGH,它共有12 条棱,从中任意取出3 条棱的方法2 共有312C=220 种下面考虑使3 条棱两两异面的取法数由于正方体的棱共确定3 个互不
4、平行的方向 即AB、AD、AE 的方向,具有相同方向的4 条棱两两共面,因此取出的3 条棱必属于3个不同的方向可先取定AB 方向的棱,这有4 种取法不妨设取的棱就是AB,则 AD 方向只能取棱 EH 或棱 FG,共 2 种可能当AD 方向取棱是EH 或 FG 时,AE 方向取棱分别只能是 CG 或 DH 由上可知,3 条棱两两异面的取法数为42=8,故所求概率为82220556在平面直角坐标系xOy 中,点集0)63)(63(),(yxyxyx所对应的平面区域的面积为答案:24 解:设1(,)|3|60Kx yxy先 考 虑1K在 第 一 象 限 中 的 部 分,此 时 有36xy,故这些点对
5、应于图中的OCD 及其内部由对称性知,1K对应的区域是图中以原点O 为中心的菱形ABCD 及其内部同理,设2(,)|3|60Kx yxy,则2K对应的区域是图中以O 为中心的菱形EFGH及其内部由点集K的定义知,K所对应的平面区域是被1K、2K中恰好一个所覆盖的部分,因此此题所要求的即为图中阴影区域的面积S由于直线 CD 的方程为36xy,直线 GH 的方程为36xy,故它们的交点P 的坐标为3 3(,)2 2由对称性知,138842422CPGSS7设为正实数,假设存在实数)2(,baba,使得2sinsinba,则的取值范围为答 案:9 513,),)4 24w 解:2sinsinba知,
6、1sinsinba,而2,wwbasi,故题目条件等价于:存在整数,()k l kl,使得wlkw22222 当4w时,区间2,ww的长度不小于4,故必存在,k l满足式当04w时,注意到)8,0(2,ww,故仅需考虑如下几种情况:(i)ww2252,此时21w且45w无解;(ii)ww22925,此时2549w;(iii)ww221329,此时29413w,得4413w综合(i)、(ii)、(iii),并注意到4w亦满足条件,可知9 513,),)4 24w8对四位数abcd(9d,0,91cba,),假设,dccbba则称abcd为P类文档编码:CY4E6X7O4V1 HM4D6R7R8T
7、9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S
8、2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7
9、O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R
10、8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H1
11、0S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6
12、X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R
13、7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S23 数;假设dccbba,,则称abcd为Q类数,用 N(P)和 N(Q)分别表示P类数与Q类数的个数,则N(P)-N(Q)的值为答案:285解:分别记P 类数、Q 类数的全体为A、B,再将个位数为零的P 类数全体记为0A,个位数不等于零的尸类数全体记为1A对任一四位数1Aabcd,将其对应到四位数dcba,注意到1
14、,dccbba,故Bdcba反之,每个Bdcba唯一对应于从中的元素abcd这建立了1A与 B 之间的一一对应,因此有011()()|N PN QABAABA下面计算0|A对任一四位数00Aabc,b可取 0,1,9,对其中每个b,由9ab及9cb知,a和c分别有b9种取法,从而99220019 1019|(9)2856bkAbk因此,()()285N PN Q二、解答题:本大题共3 小题,总分值56 分,解答应写出文字说明、证明过程或演算步骤。9 此题总分值16 分假设实数cba,满足cbacba424,242,求c的最小值解:将2,2,2abc分别记为,x y z,则,0 x y z由条件
15、知,222,xyz xyz,故2222224()2zyxzyzy zy 8 分因此,结合平均值不等式可得,42233211111 13(2)3 222444yyzyyyyyy y 12 分当212yy,即312y时,z的最小值为3324此时相应的x值为3324,符合要求 由于2logcz,故c的最小值32235log(2)log 34316 分10 此题总分值20 分设4321,aaaa为四个有理数,使得:3,1,81,23,2,2441jiaaji,求4321aaaa的值解:由条件可知,(14)ija aij是 6 个互不相同的数,且其中没有两个为相反数,由 此 知,4321,aaaa的 绝
16、 对 值 互 不 相 等,不 妨 设|4321aaaa,则|(14)ijaaij中最小的与次小的两个数分别是12|aa及13|aa,最大与次大的两个数分别是34|aa及24|aa,从而必须有121324341,81,3,24,a aa aa aa a10 分于是2341112113,248aaaaaaa文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R
17、8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H1
18、0S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6
19、X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R
20、7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7
21、H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4
22、E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D
23、6R7R8T9 ZH5T2Y7H10S24 故2231412113,24 2,82a aa aaa,15 分结合1aQ,只可能114a由此易知,123411,4,642aaaa或者123411,4,642aaaa检验知这两组解均满足问题的条件故123494aaaa 20 分11 此题总分值20 分在平面坐标系xOy 中,21,FF分别为椭圆1222yx的左右焦点,设不经过焦点1F的直线l与椭圆交于两个不同的点BA,,焦点2F到直线l的距离为d,如果11,BFlAF的斜率依次成等差数列,求d的取值范围解:由条件知,点1F、2F的坐标分别为-1,0 和 l,0)设直线 l 的方程为ykxm,点 A
24、、B 的坐标分别为11(,)xy和22(,)xy,则12,x x满足方程22()12xkxm,即222(21)4(22)0kxkmxm由于点 A、B 不重合,且直线l 的斜率存在,故12,x x是方程的两个不同实根,因此有的判别式22222(4)4(21)(22)8(21)0kmkmkm,即2221km由直线11,BFlAF的斜率1212,11yykxx依次成等差数列知,1212211yykxx,又1122,ykxm ykxm,所以122112()(1)()(1)2(1)(1)kxmxkxmxk xx,化简并整理得,12()(2)0mkxx假设mk,则直线l 的方程为ykxk,即z 经过点1F
25、-1,0),不符合条件因此必有1220 xx,故由方程及韦达定理知,1224()221kmxxk,即12mkk由、知,222121()2kmkk,化简得2214kk,这等价于2|2k反之,当,m k满足及2|2k时,l 必不经过点1F否则将导致mk,与矛盾,而此时,m k满足,故l 与椭圆有两个不同的交点A、B,同时也保证了1AF、1BF的斜率存在否则12,xx中的某一个为-l,结合1220 xx知121xx,与方程有两个不同的实根矛盾 10 分点2Fl,0到直线l:ykxm的距离为2222|1111|2|(2)221111kmdkkkkkk注意到2|2k,令211tk,则(1,3)t,上式可
26、改写为文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6
27、X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R
28、7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7
29、H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4
30、E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D
31、6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2
32、Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S25 21313()()222tdttt考虑到函数13()()2f ttt在1,3上上单调递减,故由得,(3)(1)fdf,即(3,2)d 20 分加试1 此题总分值40 分设)2(,21naaan是实数,证明:可以选取1,1,21n,使得)(1()()(12
33、2121niiiniiniianaa证法一:我们证明:22221112()(1)()nnnniijiniiijaaana,即对1,2,2ni,取1i,对1,2nin,取1i符合要求这里,x表示实数x的整数部分 10 分事实上,的左边为2222222111 1 1 122222nnnnnnijijijnnniiijjjaaaaaa2221 122222nnijnijnnana柯西不等式30 分2221 1212222nnijnijnnaa利用122nnn2221 12(1)nnijnijnana利用 xx21(1)()niina所以 得证,从而此题得证证法二:首先,由于问题中12,na aa的对
34、称性,可设12naaa此外,假设将12,na aa中的负数均改变符号,则问题中的不等式左边的21)(niia不减,而右边的21niia不 变,并 且 这 一 手 续 不 影 响1i的 选 取,因 此 我 们 可 进 一 步 设120naaa10 分文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7
35、O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R
36、8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H1
37、0S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6
38、X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R
39、7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7
40、H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S26 引理:设12
41、0naaa,则1110(1)niiiaa事实上,由于1(1,2,1)iiaain,故当n是偶数时,1123411(1)()()()0niinniaaaaaaa,11232111(1)()()niinnniaaaaaaaa当n是奇数时,11234211(1)()()()0niinnniaaaaaaaa,1123111(1)()()niinniaaaaaaa引理得证30 分回到原题,由柯西不等式及上面引理可知22122211111(1)(1)nnnniiiiiiiiiaanaana,这就证明了结论40 分证 法 三:加 强 命 题:设12,na aa2n 是 实 数,证 明:可 以 选 取12,1
42、,1 n,使得2221111()()()()nnniiiiiiiaanan.证明不妨设22212naaa,以下分n为奇数和n为偶数两种情况证明.当n为奇数时,取12121n,13221nnn,于是有12221112()()()nnniijniijaaa12221122()+()nnijnijaa1222112112()+2()()22nnijnijnnana应用柯西不等式.1222112(1)()+(1)()nnijnijnana另外,由于22212naaa,易证有122211211(1)(1)nnijnijaann,因此,由式即得到1222112(1)()+(1)()nnijnijnana2
43、11()()niinan,故n为奇数时,原命题成立,而且由证明过程可知,当且仅当12121n,13221nnn,且12naaa时取等号.文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T
44、9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S
45、2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7
46、O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R
47、8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H1
48、0S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6
49、X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S2文档编码:CY4E6X7O4V1 HM4D6R7R8T9 ZH5T2Y7H10S27 当n为偶数时,取1221n,24221nnn,于是有2222112()()()nnniijniijaaa22222122()
50、+()nnijnijaa2222122()+2()()22nnijnijnnana应用柯西不等式.222212()+()nnijnijnaa22111()()()nniiiinanan,故n为偶数时,原命题也成立,而且由证明过程可知,当且仅当120naaa时取等号,假设12,na aa不全为零,则取不到等号.综上,联赛加试题一的加强命题获证.2 此题总分值40 分设,21nAAAS其中nAAA,21是n个互不相同的有限集合)2(n,满足对任意的SAAji,,均有SAAji,假设2min1iniAk,证明:存在iniAx1,使得x属于nAAA,21中的至少kn个集合证明:不妨设1|Ak设在12,