初中数学竞赛中多元极值问题的常用解法.docx

上传人:叶*** 文档编号:55369327 上传时间:2022-10-30 格式:DOCX 页数:4 大小:166.59KB
返回 下载 相关 举报
初中数学竞赛中多元极值问题的常用解法.docx_第1页
第1页 / 共4页
初中数学竞赛中多元极值问题的常用解法.docx_第2页
第2页 / 共4页
点击查看更多>>
资源描述

《初中数学竞赛中多元极值问题的常用解法.docx》由会员分享,可在线阅读,更多相关《初中数学竞赛中多元极值问题的常用解法.docx(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 初中数学竞赛中多元极值问题的常用解法嘉积中学海桂学校 刘红军多元极值问题是初中数学竞赛中的常见题型,此类问题有着极为丰富的内涵,它涉及的知识面广,综合性强,解法颇具有技巧性,解答这类问题可以根据不同情况的具体特点,采取不同的方法,现以近年来的数学竞赛题为例,介绍这类问题的常用解法,供大家参考.一、配方法:配方法是数学中的一种重要的方法,将已知代数式(等式)配方成若干个完全平方式的形式,结合非负性质,问题常能顺利解决.例1 设,为实数,代数式的最小值为 .(2005年武汉CASIO选拔赛试题)分析及解:配方得:原式=显然,当时,原式有最小值-10.同类型试题: 设,为实数,代数式的最小值为 .

2、(第21届江苏省初中数学竞赛试题),此题也可以用配方法来解决,最小值为3.二、消元法:把多个元素转化为某一元素为主元,再结合已知条件,经过合理的运算,使问题逐步简化,便利求解.例2 已知,为整数,且,若,则:的最小值是: .(2006年全国初中数学竞赛决赛试题)分析及解:由,得 因为,为整数,所以,的最大值为1002于是,的最大值为5013例3 若,且x、y、z均为非负数,则的最大值为_.(2007年全国初中数学竞赛海南赛区初赛试题)分析及解:由用x来表示y、z,得y=402x,z=x10,又由y0,z0,得解得10x20,又把y=402x,z=x10代入M=5x+4y+2z得,M=x+140

3、,显然M是关于x的一次函数,且M随x增大而减小,所以当x=10时,M的最大值为130.三、数形结合法: 数形结合就是把抽象的数学语言、数量关系及直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维及形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的.例4 已知,且则的最小值为( )(A)3 (B)4 (C)5 (D)分析及解:这道题,初识实感无从下手,若将“式”转化成“形则或轻松解.(如图1)分别以、1和、2为直角边,、为斜边,构造如图1所示的两个、。由图形显见,当点C位于直线 AD上时,AC+AD最短,即的值最小.A GB C ED21

4、图 1于是过点A作AG垂直DE的延长线交于G点,则四边形ABEG是矩形,又在中,DG=3,AG=5, 斜边AD=, 由勾股定理可得:AD= 故应选择D。同类型试题: 已知,均为正数,且,求的最小值(2003年北京市初二数学竞赛试题),此题也可以用此方法来解决,最小值为.四、均值代换法:在数学问题中,出现条件时,我们常作代换,这种代换称为均值代换.例5 若,均为正数,且,求的最小值.分析及解:由,设: ,则 当时,即时,此时,原式有最小值:.五、和差代换法:对于任意的实数,,总有 ,若令则有:,这种代换称为和差代换.例6 已知实数满足,那么t的取值范围是 _.分析及解:设,把它们代入 中,得:

5、化简得: 因为: 即:六、参数法:参数法是指在解题过程中,通过适当引入一些及题目研究的数学对象发生联系的新变量(参数),以此作为媒介,再进行分析和综合,从而解决问题.例7 若,则可取的最小值为( )(2003年武汉选拔试题)A. 3B. C. D. 6解:设 则所以当时 的值最小为,应选B七、整体设元法:就是把一些看似彼此独立而实质是紧密相联系的量看成一个整体去设元、列式、变形、消元、代入和求值等.例8 已知,为实数,那么的最小值是 分析及解:本题要直接求出所求式子的值很困难,故可以采取整体设元,巧妙运用二元一次方程的根的判别式来解决,思路就显得非常简捷.设=,将等式整理成关于为主元的二次方程,得为实数 即 就是 ,当时,有.故当时, 有最小值,即代数式有最小值是-1.八、利用函数的性质:借助二次(一次)函数的增减性,并注意自变量的取值范围,可使问题迎刃而解.例9 已知,且,求的最小值.( 2004年“TRULY信利杯”全国初中数学竞赛试题)分析及解:将已知等式两边平方得 整理可得: 又 ,得.故=此为关于的二次函数,且开口向上,对称轴为=2 ,又由于,知当时, 取得最小值4.多元极值问题的解法不仅是上述几种,还有其它的解法,在此就不一一说明了.在做题的过程中,要通过观察、分析、发掘,促使题目中的隐含条件显现出来,然后采用恰当的解法解答这类问题.第 4 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁