《(完整word版)高中数学三角函数习题及答案(word文档良心出品).pdf》由会员分享,可在线阅读,更多相关《(完整word版)高中数学三角函数习题及答案(word文档良心出品).pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第 1 页 共 8 页第一章三角函数一、选择题1已知为第三象限角,则2所在的象限是()A第一或第二象限B第二或第三象限C第一或第三象限D第二或第四象限2若 sin cos 0,则 在()A第一、二象限B第一、三象限C第一、四象限D第二、四象限3sin34cos65tan34()A433B433C43D434已知 tan tan12,则 sin cos 等于()A 2 B2C2D25已知 sin xcos x51(0 x),则 tan x 的值等于()A43B34C43D346已知 sin sin,那么下列命题成立的是()A若,是第一象限角,则cos cos B若,是第二象限角,则tan tan
2、 C若,是第三象限角,则cos cos D若,是第四象限角,则tan tan 7已知集合A|2k 32,kZ,B|4k 32,kZ,C|k 32,kZ,则这三个集合之间的关系为()A ABCBBACCCABDBCA8已知 cos()1,sin 31,则 sin 的值是()第 2 页 共 8 页A31B31C322D3229在(0,2)内,使 sin xcos x 成立的 x 取值范围为()A2,445,B,4C45,4D,423,4510把函数 ysin x(xR)的图象上所有点向左平行移动3个单位长度,再把所得图象上所有点的横坐标缩短到原来的21倍(纵坐标不变),得到的图象所表示的函数是()
3、A ysin32x,xRBysin62x,xRCysin32x,xRDysin322x,xR二、填空题11函数 f(x)sin2 x3 tan x 在区间34,上的最大值是12已知 sin 552,2,则 tan 13若 sin253,则 sin214若将函数ytan4x(0)的图象向右平移6个单位长度后,与函数ytan6x的图象重合,则的最小值为15已知函数f(x)21(sinxcosx)21|sinxcosx|,则 f(x)的值域是16关于函数f(x)4sin32x,xR,有下列命题:函数y=f(x)的表达式可改写为y=4cos62x;函数y=f(x)是以 2 为最小正周期的周期函数;函数
4、 yf(x)的图象关于点(6,0)对称;函数 yf(x)的图象关于直线x6对称其中正确的是_文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8
5、A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8
6、S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V
7、5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:C
8、P8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 H
9、A8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE
10、8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1第 3 页 共 8 页三、解答题17求函数f(x)lgsin x1cos2x的定义域18化简:(1)()()()()()(180coscos180tan360tansin1
11、80sin;(2)()()()(cossinsinsinnnnn(nZ)文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8
12、HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 Z
13、E8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编
14、码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E
15、8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7
16、 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文
17、档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1第 4 页 共 8 页19求函数ysin62x的图象的对称中心和对称轴方程20(1)设函数 f(x)xaxsinsin(0 x),如果a0,函数 f(x)是否存在最大值和最小值,如果存在请写出
18、最大(小)值;(2)已知k0,求函数ysin2 xk(cos x1)的最小值文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E
19、8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7
20、 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文
21、档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V
22、8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7
23、E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y
24、1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1第 5 页 共 8 页参考答案一、选择题1D 解析:2k 2k 23,kZk 22k 43,kZ2B 解析:sin cos 0,sin ,cos 同号当 sin 0,cos 0时,在第一象
25、限;当sin 0,cos 0 时,在第三象限3A 解析:原式3tan6cos3sin4334D 解析:tan tan1cossinsincoscossin12,sin cos 21(sin cos )212sin cos 2sincos 2 5B 解析:由得 25cos2 x5cos x120解得 cos x54或53又 0 x,sin x0若 cos x54,则 sin xcos x51,cos x53,sin x54,tan x346D 解析:若,是第四象限角,且sin sin,如图,利用单位圆中的三角函数线确定,的终边,故选D1cossin51cossin22xxxx(第 6 题)文档编
26、码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E
27、8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7
28、 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文
29、档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V
30、8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7
31、E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y
32、1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1第 6 页 共 8 页7B 解析:这三个集合可以看作是由角32的终边每次分别旋转一周、两周和半周所得到的角的集合8B 解析:cos()1,2k,kZ2k sin sin(2k)sin()sin 319C 解析:作出在(0,2)区间上正弦和余弦函数的图象,解出两交点的横坐
33、标4和45,由图象可得答案本题也可用单位圆来解10C 解析:第一步得到函数ysin3x的图象,第二步得到函数ysin32x的图象二、填空题11415解析:f(x)sin2 x3tanx 在34,上是增函数,f(x)sin233 tan341512 2解析:由 sin 552,2 cos 55,所以 tan 21353解析:sin253,即 cos 53,sin2cos531421解析:函数ytan4x(0)的图象向右平移6个单位长度后得到函数ytan46xtan64x的图象,则646 k(kZ),文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8
34、A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8
35、S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V
36、5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:C
37、P8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 H
38、A8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE
39、8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码
40、:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1第 7 页 共 8 页6k21,又 0,所以当k0 时,min2115221,解析:f(x)21(sinxcosx)21|sinxcosx|)()(xxxxxxcossin sin cossin cos即f(x)等价于 min sin x,cos x,如图可知,f(x)maxf 422,f(x)minf()116解析:f(x)4sin32x 4cos322x4
41、cos62x4cos62x T22,最小正周期为 令 2x3 k,则当k 0 时,x6,函数 f(x)关于点06,对称 令 2x3 k 2,当x6时,k21,与 kZ 矛盾 正确三、解答题17x|2k x2k 4,kZ 解析:为使函数有意义必须且只需01cos20sin xx(第 15 题)(第 17 题)文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7
42、W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O
43、5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8
44、A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8
45、S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V
46、5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:C
47、P8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 H
48、A8S7W7B7E7 ZE8V5O5F6Y1第 8 页 共 8 页先在 0,2)内考虑 x 的取值,在单位圆中,做出三角函数线由得 x(0,),由得 x 0,4 47,2 二者的公共部分为x40,所以,函数f(x)的定义域为 x|2k x 2k 4,kZ18(1)1;(2)cos2解析:(1)原式coscostan tan sin sin tan tan 1(2)当 n 2k,kZ 时,原式)()()()(2cos2sin 2sin 2sin kkkkcos2当 n2k1,kZ 时,原式)()()()(12cos12sin 12sin 12sin kkkkcos219对称中心坐标为0,122k
49、;对称轴方程为x2k3(k Z)解析:ysin x 的对称中心是(k,0),kZ,令 2x6k,得 x2k12 所求的对称中心坐标为0,122k,kZ又 ysin x 的图象的对称轴是xk 2,令 2x6k 2,得 x2k3 所求的对称轴方程为x2k3(kZ)20(1)有最小值无最大值,且最小值为1 a;(2)0解析:(1)f(x)xaxsinsin 1xasin,由 0 x,得 0 sin x1,又 a 0,所以当sin x 1时,f(x)取最小值1a;此函数没有最大值(2)1cos x1,k0,k(cos x1)0,又 sin2x0,当 cos x 1,即 x2k(k Z)时,f(x)si
50、n2 xk(cos x1)有最小值f(x)min0文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7 ZE8V5O5F6Y1文档编码:CP8A10S8V8E8 HA8S7W7B7E7