《(完整word版)高中数学不等式知识点总结(word文档良心出品).pdf》由会员分享,可在线阅读,更多相关《(完整word版)高中数学不等式知识点总结(word文档良心出品).pdf(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、选修 4-5 知识点1、不等式的基本性质(对称性)abba(传递性),ab bcac(可加性)abacbc(同向可加性)dbcadcba,(异向可减性)dbcadcba,(可积性)bcaccba0,bcaccba0,(同向正数可乘性)0,0abcdacbd(异向正数可除性)0,0ababcdcd(平方法则)0(,1)nnababnNn且(开方法则)0(,1)nnabab nNn且(倒数法则)babababa110;1102、几个重要不等式222abab abR,,(当且仅当ab时取号).变形公式:22.2abab(基本不等式)2abababR,,(当且仅当ab时取到等号).变形公式:2aba
2、b2.2abab用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.(三个正数的算术几何平均不等式)33abcabc()abcR、(当且仅当abc时取到等号).222abcabbcca abR,(当且仅当abc时取到等号).3333(0,0,0)abcabc abc(当且仅当abc时取到等号).0,2baabab若则(当仅当a=b 时取等号)0,2baabab若则(当仅当a=b 时取等号)banbnamambab1,(其中000)abmn,规律:小于1 同加则变大,大于1 同加则变小.220;axaxaxaxa当时,或22.xaxaaxa绝对值三角不等式.
3、ababab3、几个著名不等式平均不等式:2211222abababab,,a bR(,当且仅当ab时取号).(即调和平均几何平均算术平均平方平均).变形公式:222;22ababab222().2abab幂平均不等式:222212121.(.).nnaaaaaan二维形式的三角不等式:22222211221212()()xyxyxxyy1122(,).xy xyR二维形式的柯西不等式:22222()()()(,).abcdacbda b c dR当且仅当adbc时,等号成立.文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6
4、 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5
5、K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F
6、3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L
7、9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U
8、7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:
9、CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C
10、10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7三维形式的柯西不等式:22222221231231 12233()()().aaabbba ba ba b一般形式的柯西不等式:2222221212(.)(.)nnaaabbb21 122(.).nna ba ba b向量形式的柯西不等式:设,是两个向量,则,当且仅当是零向量,或存在实
11、数k,使k时,等号成立.排序不等式(排序原理):设1212.,.nnaaa bbb为两组实数.12,.,nc cc是12,.,nb bb的任一排列,则12111 122.nnnnna ba ba ba ca ca c1 122.nna ba ba b(反序和乱序和顺序和),当且仅当12.naaa或12.nbbb时,反序和等于顺序和.琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()fx,对于定义域中任意两点1212,(),x xxx有12121212()()()()()().2222xxf xf xxxf xf xff或则称 f(x)为凸(或凹)函数.4、不等式证明的几种常用方法常
12、用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.常见不等式的放缩方法:舍去或加上一些项,如22131()();242aa将分子或分母放大(缩小),如211,(1)kk k211,(1)kk k2212,21kkkkkk*12(,1)1kNkkkk等.5、一元二次不等式的解法求一元二次不等式20(0)axbxc或2(0,40)abac解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7
13、C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J
14、6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A
15、5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10
16、F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5
17、L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2
18、U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码
19、:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标
20、准化,则()0()()0()()()0()0()0()f xfxg xg xf xg xf xg xg x(“或”时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解2()0()(0)()f xf xa af xa2()0()(0)()f xf xa af xa2()0()0()()()0()0()()f xf xf xg xg xg xf xg x或2()0()()()0()()f xf xg xg xf xg x()0()()()0()()f xf xg xg xf xg x规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9
21、、指数不等式的解法:当1a时,()()()()fxg xaafxg x当01a时,()()()()fxg xaaf xg x规律:根据指数函数的性质转化.10、对数不等式的解法文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档
22、编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7
23、G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H
24、6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP
25、1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X
26、10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 Z
27、Y5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4
28、C2U7当1a时,()0log()log()()0()()aaf xf xg xg xf xg x当01a时,()0log()log()()0.()()aaf xf xg xg xf xg x规律:根据对数函数的性质转化.11、含绝对值不等式的解法:定义法:(0).(0)aaaaa平方法:22()()()().f xg xfxgx同解变形法,其同解定理有:(0);xaaxa a(0);xaxaxa a或()()()()()()0)f xg xg xf xg xg x()()()()()()()0)f xg xf xg xf xg xg x或规律:关键是去掉绝对值的符号.12、含有两个(或两个以
29、上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如20axbxc且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有:讨论a与 0 的大小;讨论与 0 的大小;讨论两根的大小.14、恒成立问题不等式20axbxc的解集是全体实数(或恒成立)的条件是:当0a时0,0;bc当0a时00.a不等式20axbxc的解集是全体实数(或恒成立)的条件是:文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文
30、档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS
31、7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10
32、H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 H
33、P1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7
34、X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3
35、ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U
36、4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7当0a时0,0;bc当0a时00.a()f xa恒成立max();f xa()f xa恒成立max();f xa()f xa恒成立min();f xa()f xa恒成立min().f xa15、线性规划问题常见的目标函数的类型:“截距”型:;zAxBy“斜率”型:yzx或;ybzxa“距离”型:22zxy或22;zxy22()()zxa
37、yb或22()().zxayb在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3
38、 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9
39、U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7
40、文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:C
41、S7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C1
42、0H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7文档编码:CS7G7C10H6J6 HP1A5K7X10F3 ZY5L9U4C2U7