《(完整word版)简单三角恒等变换典型例题.pdf》由会员分享,可在线阅读,更多相关《(完整word版)简单三角恒等变换典型例题.pdf(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、简单三角恒等变换复习一、公式体系1、和差公式及其变形:(1)sincoscossin)sin()s in(s i nc o sc o ss i n(2)sinsincoscos)cos()c o s(s i ns inc o sc o s(3)tantan1tantan)tan(去分母得)t a nt an1)(tan(tantan)tantan1)(tan(tantan2、倍角公式的推导及其变形:(1)cossin2sincoscossin)sin(2sin2sin21cossin2)cos(sin2sin1(2)22sincossinsincoscos)cos(2cos)sin)(coss
2、in(cossincos2cos221cos2)cos1(cossincos2cos22222把 1 移项得2cos22cos1或2cos22cos1【因为是2的两倍,所以公式也可以写成12cos2cos2或2cos2cos12或2c o s2c o s12因为4是2的两倍,所以公式也可以写成12cos24cos2或2c o s24c o s12或2c o s24c o s12】22222sin21sin)sin1(sincos2cos把 1 移项得2sin22cos1或2sin22cos1【因为是2的两倍,所以公式也可以写成2sin21cos2或2s i n2c o s12或2s i n2c
3、 o s12因为4是2的两倍,所以公式也可以写成2sin214cos2或2s i n24c o s12或2s i n24c o s12】二、基本题型1、已知某个三角函数,求其他的三角函数:注意角的关系,如)4()4(,)(,)(等等(1)已知,都是锐角,135)cos(,54sin,求sin的值(2)已知,40,1312)45sin(,434,53)4cos(求)sin(的值(提示:)4()45(,只要求出)sin(即可)2、已知某个三角函数值,求相应的角:只要计算所求角的某个三角函数,再由三角函数值求角,注意选择合适的三角函数(1)已知,都是锐角,10103cos,55sin,求角的弧度3、
4、)(T公式的应用(1)求)32tan28tan1(332tan28tan0000的值文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 H
5、A9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3
6、U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 H
7、A9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3
8、U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 H
9、A9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3
10、U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7(2)ABC 中,角 A、B 满足2)tan1)(tan1(BA,求 A+B 的弧度4、弦化切,即已知tan,求与 sin,cos相关的式子的值:化为分式,分子分母同时除以cos或2cos等(1)已知2tan,求2cos2sin3,2cos2sin12cos2sin1,cos
11、sin3cos5sin的值5、切化弦,再通分,再弦合一(1)、化简:)10tan31(50sin0000035sin10cos)110(tan(2)、证明:xxxxxtan)2tantan1(cos22sin6、综合应用,注意公式的灵活应用与因式分解结合化简4cos2sin22文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文
12、档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A
13、3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文
14、档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A
15、3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文
16、档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A
17、3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U71、sin 20 cos40cos20 sin 40的值等于()A.14B.32C
18、.12D.342、若tan3,4tan3,则tan()等于()A.3B.3C.13D.133、cos5cos52的值等于()A41B21C2 D4 4、已知02A,且3cos5A,那么sin2A等于()A.425B.725C.1225D.24255、已知,41)4tan(,52)tan(则)4tan(的值等于()A1813B.223C.2213D.1836、sin165o=()A21B23C426D4267、sin14ocos16o+sin76ocos74o的值是()A23B21C23D218、已知(,0)2x,4cos5x,则x2tan()A247B247C724D7249、化简 2sin(
19、4x)sin(4+x),其结果是()sin2x cos2x cos2x sin2x10、sin123cos12的值是()A0 B 2C2D2 sin12511、)(75tan75tan12的值为A32B332C32D332文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7
20、ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I
21、6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7
22、ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I
23、6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7
24、ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7文档编码:CQ3I6V3J9R2 HA9A3I6T2L7 ZO3H3O1O3U7