《(完整word版)千题百炼——高考数学100个热点问题(一):第12炼复合函数零点问题.pdf》由会员分享,可在线阅读,更多相关《(完整word版)千题百炼——高考数学100个热点问题(一):第12炼复合函数零点问题.pdf(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第二章第 12 炼 复合函数零点问题函数及其性质第 12 炼 复合函数零点问题一、基础知识:1、复合函数定义:设yf t,tg x,且函数g x的值域为f t定义域的子集,那么y通过t的联系而得到自变量x的函数,称y是x的复合函数,记为yfg x2、复合函数函数值计算的步骤:求ygfx函数值遵循“由内到外”的顺序,一层层求出函数值。例如:已知22,xfxg xxx,计算2gf解:2224f241 2gfg3、已知函数值求自变量的步骤:若已知函数值求x的解,则遵循“由外到内”的顺序,一层层拆解直到求出x的值。例如:已知2xfx,22g xxx,若0gfx,求x解:令tfx,则2020g ttt解
2、得0,2tt当0020 xtfx,则x当2222xtfx,则1x综上所述:1x由上例可得,要想求出0gfx的根,则需要先将fx视为整体,先求出fx的值,再求对应x的解,这种思路也用来解决复合函数零点问题,先回顾零点的定义:4、函数的零点:设fx的定义域为D,若存在0 xD,使得00fx,则称0 xx为fx的一个零点5、复合函数零点问题的特点:考虑关于x的方程0g fx根的个数,在解此类问题时,要分为两层来分析,第一层是解关于fx的方程,观察有几个fx的值使得等式成立;第二层是结合着第一层fx的值求出每一个fx被几个x对应,将x的个数汇总后即为0gfx的根的个数6、求解复合函数ygfx零点问题的
3、技巧:第二章第 12 炼 复合函数零点问题函数及其性质(1)此类问题与函数图象结合较为紧密,在处理问题的开始要作出,fxg x的图像(2)若已知零点个数求参数的范围,则先估计关于fx的方程0gfx中fx解的个数,再根据个数与fx的图像特点,分配每个函数值ifx被几个x所对应,从而确定ifx的取值范围,进而决定参数的范围复合函数:二、典型例题例1:设 定 义 域 为R的 函 数1,111,1xxfxx,若 关 于x的 方 程20fxbfxc由 3 个不同的解123,x xx,则222123xxx_ 思路:先作出fx的图像如图:观察可发现对于任意的0y,满足0yfx的x的个数分别为 2 个(000
4、,1yy)和 3 个(01y),已知有3 个解,从而可得1fx必为20fxbfxc的根,而另一根为1或者是负数。所以1ifx,可解得:1230,1,2xxx,所以2221235xxx答案:5 例 2:关于x的方程22213120 xx的不相同实根的个数是()A.3 B.4 C.5 D.8 思路:可将21x视为一个整体,即21t xx,则方程变为2320tt可解得:1t或2t,则只需作出21t xx的图像,然后统计与1t与2t的交点总数即可,共有 5 个答案:C 例3:已 知 函 数11()|f xxxxx,关 于x的 方 程2()()0fxa fxb(,a bR)恰有 6 个不同实数解,则a的
5、取值范围是文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文
6、档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE
7、4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T
8、6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD
9、10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3
10、A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10
11、ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3第二章第 12 炼 复合函数零点问题函数及其性质思路:所解方程2()()0fxa f xb可视为20fxa fxb,故考虑作出fx的图像:2,12,012,1
12、02,1xxxxfxxxxx,则fx的图像如 图,由 图 像 可 知,若 有6个 不 同 实 数 解,则 必 有122,02fxfx,所以122,4afxfx,解得42a答案:42a例 4:已知定义在R上的奇函数,当0 x时,121,0212,22xxfxfxx,则关于x的方程2610fxfx的实数根个数为()A.6B.7C.8D.9思路:已知方程2610fxfx可解,得1211,23fxfx,只需统计11,23yy与yfx的交点个数即可。由奇函 数 可 先 做 出0 x的 图 像,2x时,122fxfx,则2,4x的 图 像 只需 将0,2x的图像纵坐标缩为一半即可。正半轴图像完成后可再利用
13、奇函数的性质作出负半轴图像。通过数形结合可得共有7 个交点答案:B 小炼有话说:在作图的过程中,注意确定分段函数的边界点属于哪一段区间。例 5:若函数32fxxaxbxc有极值点12,x x,且11fxx,则关于x的方程2320fxafxb的不同实根的个数是()A3 B4 C5 D6 文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10
14、ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C
15、7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文
16、档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE
17、4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T
18、6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD
19、10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3
20、A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3第二章第 12 炼 复合函数零点问题函数及其性质思路:232fxxaxb由极值点可得:12,x x为2320 xaxb的两根,观察到方程与2320fxafxb结构完全相同,所以可得2320fxafxb的两根为1122,fxxfxx,其中111fxx,若12xx,可 判 断 出1x是 极 大 值 点,2x是 极 小 值 点。且2211fxxxfx,所以1yfx与fx有两个交点,而2fx与fx有一个交点,共计3 个;若12xx,可判断出1x是极小值点,2x是极大值点。且2211fx
21、xxfx,所以1yfx与fx有两个交点,而2fx与fx有一个交点,共计3 个。综上所述,共有3 个交点答案:A 例 6:已知函数243f xxx,若方程20fxbfxc恰有七个不相同的实根,则实数b的取值范围是()A.2,0B.2,1C.0,1D.0,2思路:考虑通过图像变换作出fx的图像(如图),因为20fxbfxc最多只能解出2 个fx,若要出七个根,则121,0,1fxfx,所以121,2bfxfx,解得:2,1b答案:B 例 7:已知函数xxfxe,若关于x的方程210fxmf xm恰有 4 个不相等的实数根,则实数m的取值范围是()A.1,22,eeB.1,1eC.11,1eD.1,
22、ee文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码
23、:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5
24、Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1
25、 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P
26、5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z
27、10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1
28、K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3第二章第 12 炼 复合函数零点问题函数及其性质思路:,0,0 xxxxefxxxe,分析fx的图像以便于作图,0 x时,1xfxx e,从而fx在0,1单调递增,
29、在1,单调递减,11fe,且当,0 xy,所以x正半轴为水平渐近线;当0 x时,1xfxxe,所以fx在,0单调递减。由此作图,从图像可得,若恰有 4 个不等实根,则关于fx的方程210fxmfxm中,12110,fxfxee,从而将问题转化为根分布问题,设tfx,则210tmtm的两根12110,ttee,设21g ttmtm,则有20010111100gmmmgeee,解得11,1me答案:C 小炼有话说:本题是作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。例 8:已知函数21,0log,0axxfxx x
30、,则下列关于函数1yffx的零点个数判断正确的是()A.当0a时,有 4 个零点;当0a时,有 1 个零点B.当0a时,有 3 个零点;当0a时,有 2 个零点C.无论a为何值,均有2 个零点D.无论a为何值,均有4 个零点思路:所求函数的零点,即方程1ffx的解的个数,先作出fx的图像,直线1yax为过定点0,1的一条直线,但需要对a的符号进行分类讨论。当0a时,图像如图所示,先拆外层可得12210,2fxfxa,而1fx有两个对应的x,2fx也文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 Z
31、U1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7
32、Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档
33、编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4
34、G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6
35、P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD1
36、0P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A
37、5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3第二章第 12 炼 复合函数零点问题函数及其性质有两个对应的x,共计 4 个;当0a时,fx的图像如图所示,先拆外层可得12fx,且12fx只有一个满足的x,所以共一个零点。结合选项,可判断出A正确答案:A 例9:已知 函数232211,0231,31,0 xxfxxxg xxx,则方程0gfxa(a为正实数)的实
38、数根最多有_个思 路:先 通 过 分 析,fxg x的 性 质 以 便 于 作 图,23632fxxxx x,从而fx在,0,2,单增,在0,2单减,且01,23ff,g x为分段函数,作出每段图像即可,如图所示,若要实数根最多,则要优先选取fx能对应x较多的情况,由fx图像可得,当3,1fx时,每个fx可对应 3 个x。只需判断gfxa中,fx能在3,1取得的值的个数即可,观察g x图像可得,当51,4a时,可以有2 个3,1fx,从而能够找到6 个根,即最多的根的个数答案:6 个文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6
39、P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD1
40、0P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A
41、5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 Z
42、U1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7
43、Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档
44、编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4
45、G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3第二章第 12 炼 复合函数零点问题函数及其性质例 10:已知函数yfx和yg x在2,2的图像如下,给出下列四个命题:(1)方程0fg x有且只有6 个根(2)方程0gfx有且只有3 个根(3)方程0ffx有且只有5 个根(4)方程0g g x有且只有 4 个根则正确命题的个数
46、是()A.1 B.2 C.3 D.4 思路:每个方程都可通过图像先拆掉第一层,找到内层函数能取得的值,从而统计出x的总数。(1)中可得1232,1,0,1,2gxgxgx,进而1gx有 2 个对应的x,2gx有 3 个,3gx有 2 个,总计7 个,(1)错误;(2)中可得122,1,0,1fxfx,进而1fx有 1 个对应的x,2fx有 3 个,总计 4 个,(2)错误;(3)中可得1232,1,0,1,2fxfxfx,进而1fx有 1 个对应的x,2fx有 3 个,3fx有 1 个,总计5 个,(3)正确;(4)中可得:122,1,0,1gxgx,进而1gx有 2 个对应的x,2gx有 2
47、个,共计4 个,(4)正确则综上所述,正确的命题共有2个答案:B 文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P
48、1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10
49、P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5
50、Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU1K5C7Z3Z3文档编码:CE4G5Q2T6P1 HD10P5V3A5Z10 ZU