2018年度高考~全国卷2理科数学真题(含答案内容).doc

上传人:小** 文档编号:547878 上传时间:2018-10-24 格式:DOC 页数:8 大小:576.97KB
返回 下载 相关 举报
2018年度高考~全国卷2理科数学真题(含答案内容).doc_第1页
第1页 / 共8页
2018年度高考~全国卷2理科数学真题(含答案内容).doc_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《2018年度高考~全国卷2理科数学真题(含答案内容).doc》由会员分享,可在线阅读,更多相关《2018年度高考~全国卷2理科数学真题(含答案内容).doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、|2018 年普通高等学校招生全国统一考试 理科数学本试卷共 23 题,共 150 分,共 5 页。一、选择题:本题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的。1. A. B. C. D. 2.已知集合 A=(x,y)x +y 3,xZ ,yZ ,则 A 中元素的个数为A.9 B.8 C.5 D.43.函数 f(x)=e -e-x/x 的图像大致为A.B.C.|D.4.已知向量 a,b 满足a=1,ab=-1,则 a(2a-b )=A.4 B.3 C.2 D.05.双曲线 x /a -y /b =1( a0,b0 )的离心率为 ,则其渐进线

2、方程为A.y= x B.y= x C.y= D.y=6.在 中,cos = ,BC=1,AC=5 ,则 AB=A.4 B. C. D.27.为计算 s=1- + - + - ,设计了右侧的程序框图,则在空白框中应填入A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取 得了世界领先的成果。哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和” ,如 30=7+23,在不超过 30 的素数中,随机选取两个不同的数,其和等于 30 的概率是|A. B. C. D. 9.在长方体 ABCD-A1B1C1D1 中,AB=BC=1,AA 1=

3、则异面直线 AD1 与 DB1 所成角的余弦值为A. B. 10.若 f(x)=cosx-sinx 在-a,a是减函数,则 a 的最大值是A. B. C. D. 11.已知 f(x)是定义域为(-,+ )的奇函数,满足 f(1-x)=f (1+x) 。若 f(1)=2 ,则 f(1 )+ f( 2)+ f(3 )+f(50 ) =A.-50 B.0 C.2 D.5012.已知 F1,F 2 是椭圆 C: =1(ab0)的左、右焦点,A 是 C 的左顶点,点 P 在过 A 且斜率为的直线上,PF 1F2 为等腰三角形,F 1F2P=120,则 C 的离心率为A. B. C. D. 二、填空题:本

4、题共 4 小题,每小题 5 分,共 20 分。13.曲线 y=2ln(x+1)在点(0,0)处的切线方程为_。14.若 x,y 满足约束条件 则 z=x+y 的最大值为_。15.已知 sin+cos=1,cos+sin=0,则 sin(+)=_。16.已知圆锥的顶点为 S,母线 SA,SB 所成角的余弦值为 ,SA 与圆锥底面所成角为 45,若SAB 的面积为 ,则该圆锥的侧面积为_。三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 1721 题为必考题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。(一)必考题:共 60 分。17.(12 分)记

5、Sn 为等差数列a n的前 n 项和,已知 a1=-7,S 1=-15。(1)求 an的通项公式;(2)求 Sn,并求 Sn 的最小值。18.(12 分)下图是某地区 2000 年至 2016 年环境基础设施投资额 y(单位:亿元)的折线图|为了预测该地区 2018 年的环境基础设施投资额,建立了 y 与时间变量 t 的两个线性回归模型。根据 2000 年至 2016 年的数据(时间变量 t 的值依次为 1,2, ,17 )建立模型: =-30.4+13.5t;根据 2010 年至2016 年的数据(时间变量 t 的值依次为 1,2, ,7)建立模型: =99+17.5t。(1)分别利用这两个

6、模型,求该地区 2018 年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由。19.(12 分)设抛物线 C:y=4x 的焦点为 F,过 F 且斜率为 k(k0)的直线 l 与 C 交于 A,B 两点,| AB|=8。(1)求 l 的方程;(2)求过点 A,B 且与 C 的准线相切的圆的方程。20.(12 分)如图,在三棱锥 P-ABC 中,AB=BC=2 ,PA=PB=PC=AC=4 ,O 为 AC 的中点。(1)证明: PO平面 ABC;(2)若点 M 在棱 BC 上,且二面角 M-PA-C 为 30,求 PC 与平面 PAM 所成角的正弦值。21、 (1

7、2 分)已经函数 f(x)=e x-ax2。(1)若 a=1,证明:当 x 0 时,f(x) 1;(2)若 f(x)在(0,+ )只有一个零点,求 a。|(二)选考题:共 10 分,请考生在第 22、23 题中任选一题作答。如果多做,则按所做的第一题计分。22、 选修 4-4:坐标系与参数方程(10 分)在直角坐标系中 xOy 中,曲线 C 的参数方程为 ( 为参数) ,直线 l 的参数方程为,(t 为参数) 。(1)求 C 和 l 的直角坐标方程;(2)若曲线 C 截直线 l 所得线段的中点坐标为(1,2) ,求 l 的斜率。23: 选修 4-5:不等式选讲(10 分)设函数 f(x ) =

8、5-| x+a|-| x-2|。(1)当 a=1 时,求不等式 f(x ) 0 的解集;(2)若 f(x) 1 时,求 a 的取值范围。参考答案:一、选择题1.D 2.A 3.B 4.B 5.A 6.A7.B 8.C 9.C 10.A 11.C 12.D二、填空题13. 14.9 15. 16.2yx12402三、解答题17. (12 分)解:(1)设 的公差为 d,由题意得 .na135ad由 得 d=2.7所以 的通项公式为 .29n(2 )由(1 )得 .28(4)6S所以当 n=4 时, 取得最小值,最小值为16.n18.(12 分)解:(1)利用模型,该地区 2018 年的环境基础设

9、施投资额的预测值为(亿元).30.15926.1y利用模型,该地区 2018 年的环境基础设施投资额的预测值为(亿元).7(2 )利用模型得到的预测值更可靠 .理由如下:()从折线图可以看出,2000 年至 2016 年的数据对应的点没有随机散布在直线 上下.这说30.415yt明利用 2000 年至 2016 年的数据建立的线性模型不能很好地描述环境基础设施投资额的变化趋势.2010 年相对 2009 年的环境基础设施投资额有明显增加,2010 年至 2016 年的数据对应的点位于一条直线的附近,这说明从 2010 年开始环境基础设施投资额的变化规律呈线性增长趋势, 利用 2010 年至 2

10、016 年的数据建立的线性模型 可以较好地描述 2010 年以后的环境基础设施投资额的变化趋势, 因此利用模型得到的预917.5yt测值更可靠.学.科网()从计算结果看,相对于 2016 年的环境基础设施投资额 220 亿元,由模型得到的预测值 226.1 亿元的增幅明显偏低,而利用模型 得到的预测值的增幅比较合理.说明利用模型得到的预测值更可靠.|以上给出了 2 种理由,考生答出其中任意一种或其他合理理由均可得分 .19.(12 分)解:(1)由题意得 , l 的方程为 .(1,0)F(1)0ykx设 ,12(,AyxB由 得 .2),4k22(4)k,故 .6012x所以 .224|()(

11、1)kABFx由题设知 ,解得 (舍去) , .248kk因此 l 的方程为 .1yx(2 )由(1 )得 AB 的中点坐标为 ,所以 AB 的垂直平分线方程为 ,即 .(3,2) 2(3)yx5yx设所求圆的圆心坐标为 ,则0(,解得 或02205,(1)()6.yxx0,xy01,6.因此所求圆的方程为 或 .23()22()()14y20.(12 分)解:(1)因为 , 为 的中点,所以 ,且 .4APCOACOPAC23连结 .因为 ,所以 为等腰直角三角形,OB2B且 , .1由 知 .22PP由 知 平面 .,ACOAC(2 )如图,以 为坐标原点, 的方向为 轴正方向,建立空间直

12、角坐标系 .BurxOxyz由已知得 取平面 的法向量(0,)(2,0)(,)(0,2)(,3),(0,23),OBACPAurPAC.2Bur设 ,则 .,Maa,4Maur设平面 的法向量为 .PA(,)xyzn|由 得 ,可取 ,0,APMurrn230(4)yzax(34),)an所以 .由已知得 .22cos,3()OB|cos,|2OBur所以 .解得 (舍去) , .22|4|=3()aa4a43a所以 .又 ,所以 .8,)3n(0,23)PCurcos,PCurn所以 与平面 所成角的正弦值为 .PCAM421 ( 12 分)【解析】 (1)当 时, 等价于 a()1fx2(

13、1)e0x设函数 ,则 2()egx 2(1)exg 当 时, ,所以 在 单调递减00,而 ,故当 时, ,即 0()()fx(2 )设函数 2()1xha在 只有一个零点当且仅当 在 只有一个零点()fx,h,(i)当 时, , 没有零点;a0()(ii)当 时, ()exx当 时, ;当 时, (0,2)h2,()0x所以 在 单调递减,在 单调递增x()故 是 在 的最小值学&科网241eah()x0,若 ,即 , 在 没有零点;()02h(,)若 ,即 , 在 只有一个零点;2h4a)x0,若 ,即 ,由于 ,所以 在 有一个零点,()02e(1h()hx0,2由(1)知,当 时,

14、,所以 x2x33342461610e()()aaa故 在 有一个零点,因此 在 有两个零点()h2,4)a(),)综上, 在 只有一个零点时, f(0,222 选修 4-4:坐标系与参数方程(10 分)【解析】 (1)曲线 的直角坐标方程为 C2146xy当 时, 的直角坐标方程为 ,cos0l tanta当 时, 的直角坐标方程为 (2 )将 的参数方程代入 的直角坐标方程,整理得关于 的方程l2(3)4(cosi)80tt|因为曲线 截直线 所得线段的中点 在 内,所以有两个解,设为 , ,则 Cl(1,2)C1t2120t又由得 ,故 ,于是直线 的斜率 1224(cosin3tcosin0lank23 选修 4-5:不等式选讲(10 分)【解析】 (1)当 时,a4,1,()26,.xf可得 的解集为 ()0fx|23x(2 ) 等价于 |4而 ,且当 时等号成立故 等价于 |()1fx|2|4a由 可得 或 ,所以 的取值范围是 4a6aa,6,)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁