《中考复习专题—二次函数压轴题(共20页).doc》由会员分享,可在线阅读,更多相关《中考复习专题—二次函数压轴题(共20页).doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上中考复习专题(七)二次函数压轴题专训题型一:面积问题【例1】(2009湖南益阳)如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)求CAB的铅垂高CD及SCAB ;xCOyABD11图2(3)设点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使SPABSCAB,若存在,求出P点的坐标;若不存在,请说明理由.【变式练习】1.(2009广东省深圳市)如图,在直角坐标系中,点A的坐标为(2,0),连结OA,将线段OA绕原点O顺时针旋转120,得到线段OB(1)求点B的坐标;(2)求经过A、O、B三
2、点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么PAB是否有最大面积?若有,求出此时P点的坐标及PAB的最大面积;若没有,请说明理由AxyBO2.(2010绵阳)如图,抛物线y = ax2 + bx + 4与x轴的两个交点分别为A(4,0)、B(2,0),与y轴交于点C,顶点为DE(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G(1)求抛物线的函数解析式,并写出顶点D的坐标;CEDGAxyOBF(2)在直线EF上求一点H,使CDH
3、的周长最小,并求出最小周长;(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,EFK的面积最大?并求出最大面积3(2012铜仁)如图,已知:直线交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A、B、C(1,0)三点.(1)求抛物线的解析式;(2)若点D的坐标为(-1,0),在直线上有一点P,使ABO与ADP相似,求出点P的坐标;(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使ADE的面积等于四边形APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由题型二:构造直角三角形【例2】(2010山东聊城)如图,已知抛物线yax2+bx+c(a0)的对称
4、轴为x1,且抛物线经过A(1,0)、C(0,3)两点,与x轴交于另一点B(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求此时点M的坐标;(3)设点P为抛物线的对称轴x=1上的一动点,求使PCB90的点P的坐标E【变式练习】1(2012广州)如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当ACD的面积等于ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三
5、个时,求直线l的解析式2.(2009成都)在平面直角坐标系xOy中,已知抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,其顶点为M,若直线MC的函数表达式为,与x轴的交点为N,且COSBCO。(1)求此抛物线的函数表达式;(2)在此抛物线上是否存在异于点C的点P,使以N、P、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点P的坐标:若不存在,请说明理由;(3)过点A作x轴的垂线,交直线MC于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?3.(2012杭州) 在平面直角坐标
6、系内,反比例函数和二次函数y=k(x2+x1)的图象交于点A(1,k)和点B(1,k)(1)当k=2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当ABQ是以AB为斜边的直角三角形时,求k的值4.如图(1),抛物线与y轴交于点A,E(0,b)为y轴上一动点,过点E的直线与抛物线交于点B、C.(1)求点A的坐标;(2)当b=0时(如图(2),与的面积大小关系如何?当时,上述关系还成立吗,为什么?(3)是否存在这样的b,使得是以BC为斜边的直角三角形,若存在,求出b;若不存在,说明理由. 第26
7、题图(1)图(2)题型三:构造等腰三角形【例3】如图,已知抛物线(a0)与轴交于点A(1,0)和点B (3,0),与y轴交于点C(1)求抛物线的解析式;(2)在x轴上是否存在一点Q使得ACQ为等腰三角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由;(3)设抛物线的对称轴与轴交于点M ,问在对称轴上是否存在点P,使CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由【变式练习】1如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C已知实数m、n(mn)分
8、别是方程x22x3=0的两根(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD当OPC为等腰三角形时,求点P的坐标;求BOD 面积的最大值,并写出此时点D的坐标2.如图,抛物线经过的三个顶点,已知轴,点在轴上,点C在轴上,且AC=BC(1)写出A,B,C三点的坐标并求抛物线的解析式;(2)探究:若点是抛物线对称轴上且在轴下方的动点,是否存在是等腰三角形若存在,求出所有符合条件的点坐标;不存在,请说明理由ACByx0113(2010黄冈)已知抛物线顶点为C(1,1)且过原点O.过抛物线上一点P(x,y)
9、向直线作垂线,垂足为M,连FM(如图).(1)求字母a,b,c的值;(2)在直线x1上有一点,求以PM为底边的等腰三角形PFM的P点的坐标,并证明此时PFM为正三角形;(3)对抛物线上任意一点P,是否总存在一点N(1,t),使PMPN恒成立,若存在请求出t值,若不存在请说明理由.题型四:构造相似三角形【例4】(2011临沂)如图,已知抛物线经过A(2,0),B(3,3)及原点O,顶点为C(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;(3)P是抛物线上的第一象限内的动点,过点P作PMx轴,垂足为M,是否存在点P,
10、使得以P、M、A为顶点的三角形BOC相似?若存在,求出点P的坐标;若不存在,请说明理由【变式练习】1.(2012天水)如图,已知抛物线经过A(4,0),B(1,0),C(0,-2)三点(1)求该抛物线的解析式;(2)在直线AC上方的该抛物线上是否存在一点D,使得DCA的面积最大?若存在,求出点D的坐标及DCA面积的最大值;若不存在,请说明理由(3)P是直线x=1右侧的该抛物线上一动点,过P作PMx轴,垂足为M,是否存在P点,使得以A、P、M为顶点的三角形与OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由2. 如图,二次函数的图象经过点D(0,),且顶点C的横坐标为4,该图象
11、在x 轴上截得的线段AB的长为6.(1)求二次函数的解析式;(2)在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;(3)在抛物线上是否存在点Q,使QAB与ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由【例5】(2012苏州)如图,已知抛物线y=x2 - (b+1)x+(b是实数且b2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C(1)点B的坐标为 ,点C的坐标为 (用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果
12、不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得QCO,QOA和QAB中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由【变式练习】(图7)11xyAO1.(2012上海宝山)如图,平面直角坐标系中,已知点A(2,3),线段垂直于轴,垂足为,将线段绕点A逆时针方向旋转90,点B落在点处,直线与轴的交于点(1)试求出点D的坐标;(2)试求经过、三点的抛物线的表达式,并写出其顶点E的坐标;(3)在(2)中所求抛物线的对称轴上找点,使得以点、为顶点的三角形与ACD相似2(2012上海杨浦区)已知直线与x轴交于点A,与y轴交于点B
13、,将AOB绕点O顺时针旋转,使点A落在点C,点B落在点D,抛物线过点A、D、C,其对称轴与直线AB交于点P,xyO11(1)求抛物线的表达式;(2)求POC的正切值;(3)点M在x轴上,且ABM与APD相似,求点M的坐标。3(2012宁波)如图,二次函数y=ax2+bx+c的图象交x轴于A(1,0),B(2,0),交y轴于C(0,2),过A,C画直线(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H若M在y轴右侧,且CHMAOC(点C与点A对应),求点M的坐标;若M的半径为,求点M的坐标题型五:构造梯
14、形【例6】已知,矩形OABC在平面直角坐标系中位置如图1所示,点A的坐标为(4,0),点C的坐标为,直线与边BC相交于点D(1)求点D的坐标;(2)抛物线经过点A、D、O,求此抛物线的表达式;(3)在这个抛物线上是否存在点M,使O、D、A、M为顶点的四边形是梯形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由【变式练习】1.已知平面直角坐标系xOy中, 抛物线yax2(a1)x与直线ykx的一个公共点为A(4,8) (1)求此抛物线和直线的解析式;(2)若点P在线段OA上,过点P作y轴的平行线交(1)中抛物线于点Q,求线段PQ长度的最大值;(3)记(1)中抛物线的顶点为M,点N在
15、此抛物线上,若四边形AOMN恰好是梯形,求点N的坐标及梯形AOMN的面积2.(2011义乌)已知二次函数的图象经过A(2,0)、C(0,12) 两点,且对称轴为直线x4,设顶点为点P,与x轴的另一交点为点B(1)求二次函数的解析式及顶点P的坐标;(2)如图1,在直线 y2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒个单位长度的速度由点P向点O 运动,过点M作直线MN/x轴,交PB于点N 将PMN沿直线MN对折,得到P1MN 在动点M的运动过程中,设P1MN与梯形OMNB的重叠部分的
16、面积为S,运动时间为t秒,求S关于t的函数关系式 3.如图1,二次函数的图象与x轴交于A、B两点,与y轴交于点C(0,1),ABC的面积为(1)求该二次函数的关系式;(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与ABC的外接圆有公共点,求m的取值范围;(3)在该二次函数的图象上是否存在点D,使以A、B、C、D为顶点的四边形为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由题型六:构造平行四边形【例7】(2010陕西)如图,在平面直角坐标系中,抛物线经过A(1,0),B(3,0),C(0,1)三点。(1)求该抛物线的表达式;(2)点Q在y轴上,点P在抛物线上,要使以点Q、P、A、
17、B为顶点的四边形是平行四边形,求所有满足条件的点P的坐标。【变式练习】1(2012成都)如图,在平面直角坐标系xOy中,一次函数(m为常数)的图象与x轴交于点A(3,0),与y轴交于点C以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a0)经过A,C两点,并与x轴的正半轴交于点B(1)求m的值及抛物线的函数表达式;(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P是抛物线对称轴上使ACP的周长取得最小值的点
18、,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试探究是否为定值,并写出探究过程2.如图1,在平面直角坐标系中,已知抛物线经过A(4,0)、B(0,4)、C(2,0)三点(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,MAB的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线yx上的动点,判断有几个位置能使以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标 3.(2011威海)如图,抛物线y=ax2+bx+c交x轴于点A(3,0),点B(1,0),交y轴于点
19、E(0,3)点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行直线y=x+m过点C,交y轴于D点(1)求抛物线的函数表达式;(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标【例8】已知平面直角坐标系xOy(如图1),一次函数的图像与y轴交于点A,点M在正比例函数的图像上,且MOMA二次函数yx2bxc的图像经过点A、M(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,
20、点C在上述二次函数的图像上,点D在一次函数的图像上,且四边形ABCD是菱形,求点C的坐标【变式练习】1.将抛物线c1:沿x轴翻折,得到抛物线c2,如图1所示(1)请直接写出抛物线c2的表达式;(2)现将抛物线c1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线c2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E当B、D是线段AE的三等分点时,求m的值;在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由题型七:线段最值问题【例9】(2011菏泽)如图
21、,抛物线y=x2+bx2与x轴交于A,B两点,与y轴交于C点,且A(1,0)(1)求抛物线的解析式及顶点D的坐标;(2)判断ABC的形状,证明你的结论;(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值【变式练习】1. (2009山东省菏泽市)如图,已知抛物线yax 2bxc与y轴交于点A(0,3),与x轴分别交于B(1,0)、C(5,0)两点(1)求此抛物线的解析式;(2)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长OyxABC2
22、. (2011广东深圳)如图13,抛物线y=ax2bxc(a0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)(1)求抛物线的解析式(2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.(3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线MNBD,交线段AD于点N,连接MD,使DNMBMD,若存在,求出点T的坐标;若不存在,说明理由.【能力
23、提升】1.(2011福州) 已知,如图11,二次函数图象的顶点为,与轴交于、两点(在点右侧),点、关于直线:对称.(1)求、两点坐标,并证明点在直线上;(2)求二次函数解析式;(3)过点作直线交直线于点,、分别为直线和直线上的两个动点,连接、,求和的最小值.图11备用图2.如图在直角坐标系中,已知点A(01),B(4)将点B绕点A顺时针方向旋转90得到点C,顶点在坐标原点的抛物线经过点B(1) 求抛物线的解析式和点C的坐标;(2) 抛物线上一动点P设点P到x轴的距离为,点P到点A的距离为,试说明;(3) 在(2)的条件下,请探究当点P位于何处时PAC的周长有最小值,并求出PAC的周长的最小值。
24、【例10】如图,已知直线与轴交于点A,与轴交于点D,抛物线与直线交于A、E两点,与轴交于B、C两点,且B点坐标为 (1,0)。(1)求该抛物线的解析式;(2)动点P在轴上移动,当PAE是直角三角形时,求点P的坐标P。(3)在抛物线的对称轴上找一点M,使的值最大,求出点M的坐标。【变式练习】1如图所示,在平面直角坐标系中,四边形ABCD是直角梯形,BCAD,BAD=90,BC与y轴相交于点M,且M是BC的中点,A、B、D三点的坐标分别是A(1,0),B(l,2),D(3,0)连接DM,并把线段DM沿DA方向平移到ON若抛物线y=ax2+bx+c经过点D、M、N(1)求抛物线的解析式(2)抛物线上是否存在点P,使得PA=PC?若存在,求出点P的坐标;若不存在,请说明理由(3)设抛物线与x轴的另一个交点为E,点Q是抛物线的对称轴上的一个动点,当点Q在什么位置时有|QEQC|最大?并求出最大值专心-专注-专业