2015届初三数学中考复习专题【二次函数压轴题】(共9页).doc

上传人:飞****2 文档编号:5411423 上传时间:2022-01-06 格式:DOC 页数:9 大小:360.50KB
返回 下载 相关 举报
2015届初三数学中考复习专题【二次函数压轴题】(共9页).doc_第1页
第1页 / 共9页
2015届初三数学中考复习专题【二次函数压轴题】(共9页).doc_第2页
第2页 / 共9页
点击查看更多>>
资源描述

《2015届初三数学中考复习专题【二次函数压轴题】(共9页).doc》由会员分享,可在线阅读,更多相关《2015届初三数学中考复习专题【二次函数压轴题】(共9页).doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上2014年中考数学冲刺复习资料:二次函数压轴题面积类【例1】如图1,已知抛物线经过点A(1,0)、B(3,0)、C(0,3)三点(1)求抛物线的解析式(2)点M是线段BC上的点(不与B,C重合),过M作MNy轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长图1(3)在(2)的条件下,连接NB、NC,是否存在m,使BNC的面积最大?若存在,求m的值;若不存在,说明理由【考点:二次函数综合题 专题:压轴题;数形结合】【巩固1】如图2,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0)(1)求抛物线的解析式;(2)试探究ABC的外接圆的

2、圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求MBC的面积的最大值,并求出此时M点的坐标【考点:二次函数综合题专题:压轴题;转化思想】图2平行四边形类【例2】如图3,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t(1)分别求出直线AB和这条抛物线的解析式(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求ABM的面积图3(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由等腰三角形

3、类【例3】如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120至OB的位置(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由【考点:二次函数综合题专题:压轴题;分类讨论】【巩固3】在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(1,0),如图所示:抛物线y=ax2+ax2经过点B(1)求点B的坐标;(2)求抛物线的解析式; (3)在抛物线上是否还存在点P(点B除外),使ACP仍然是以AC为直

4、角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由规律探索类【例4】如图,已知点A、A、A、A、A在x轴的正半轴上,且横坐标依次为连续的正整数,过点A、A、A、A、A分别作x轴的垂线,交抛物线y=x+x于点B、B、B3、B、B,交过点B1的直线y=2x于点C、C、C、C。若BCB、BCB、B3CB、BCB的面积分别为S、S、S、S。求SS与SS的值; 猜想SS与n的数量关系,并说明理由;CCCBBBByxAAAAO若将抛物线“y=x+x”改为“y=x+bx+c”, 直线“y=2x”改为 “y=(b+1)x+c”,其它条件不变,请猜想SSn-1与n的数量关系(直接写出答案)。综

5、合类【例5】如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MNy轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,ABN的面积为S2,且S1=6S2,求点P的坐标【考点:二次函数综合题专题:压轴题】【巩固6】如图,抛物线y=ax2+bx+c(a0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上

6、,且OD=OC(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45所得直线与抛物线相交于另一点E,求证:CEQCDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由2014年中考数学冲刺复习资料:二次函数压轴题【参考答案】【例题1】考点:二次函数综合题 专题:压轴题;数形结合分析:(1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、

7、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长(3)设MN交x轴于D,那么BNC的面积可表示为:SBNC=SMNC+SMNB=MN(OD+DB)=MNOB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于SBNC、m的函数关系式,根据函数的性质即可判断出BNC是否具有最大值解答:(1)设抛物线的解析式为:y=a(x+1)(x3),则:a(0+1)(03)=3,a=1;抛物线的解析式:y=(x+1)(x3)=x2+2x+3图2(2)设直线BC的解析式为:y=kx+b,则有:,解得;故直线BC的解析式:y=x+3已知点M的横坐标为m,MNy,则M(m,m+3)

8、、N(m,m2+2m+3);故MN=m2+2m+3(m+3)=m2+3m(0m3)(3)如图2;SBNC=SMNC+SMNB=MN(OD+DB)=MNOB,SBNC=(m2+3m)3=(m)2+(0m3);当m=时,BNC的面积最大,最大值为【巩固1】【考点:二次函数综合题专题:压轴题;转化思想】分析:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可(2)首先根据抛物线的解析式确定A点坐标,然后通过证明ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标(3)MBC的面积可由SMBC=BCh表示,若要它的面积最大,需要使h取最大值,即点M到直线BC的距离最大,若设

9、一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M解答:(1)将B(4,0)代入抛物线的解析式中,得:抛物线的解析式为:y=x2x2(2)由(1)的函数解析式可求得:A(1,0)、C(0,2);OA=1,OC=2,OB=4,即:OC2=OAOB,又:OCAB,OACOCB,得:OCA=OBC;ACB=OCA+OCB=OBC+OCB=90,ABC为直角三角形,AB为ABC外接圆的直径;所以该外接圆的圆心为AB的中点,且坐标为:(,0)(3)已求得:B(4,0)、C(0,2),可得直线BC的解析式为:y=x2;设直线lBC,则该直线的解析式可表示为:y=x+b,当直线l与

10、抛物线只有一个交点时,可列方程:x+b=x2x2,即: x22x2b=0,且=0;44(2b)=0,即b=4;直线l:y=x4所以点M即直线l和抛物线的唯一交点,有: ,解得:即 M(2,3)过M点作MNx轴于N, SBMC=S梯形OCMN+SMNBSOCB=2(2+3)+2324=4图5图4【例2】考点:二次函数综合题;解一元二次方程因式分解法;待定系数法求一次函数解析式;待定系数法求二次函数解析式;三角形的面积;平行四边形的判定.专题:压轴题;存在型分析:(1)分别利用待定系数法求两函数的解析式:把A(3,0)B(0,3)分别代入y=x2+mx+n与y=kx+b,得到关于m、n的两个方程组

11、,解方程组即可;(2)设点P的坐标是(t,t3),则M(t,t22t3),用P点的纵坐标减去M的纵坐标得到PM的长,即PM=(t3)(t22t3)=t2+3t,然后根据二次函数的最值得到;当t=时,PM最长为=,再利用三角形的面积公式利用SABM=SBPM+SAPM计算即可;(3)由PMOB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM最长时只有,所以不可能;当P在第一象限:PM=OB=3,(t22t3)(t3)=3;当P在第三象限:PM=OB=3,t23t=3,分别解一元二次方程即可得到满足条件的t的值解答

12、:解:(1)把A(3,0)B(0,3)代入y=x2+mx+n,得解得,所以抛物线的解析式是y=x22x3设直线AB的解析式是y=kx+b,图7把A(3,0)B(0,3)代入y=kx+b,得,解得,所以直线AB的解析式是y=x3;(2)设点P的坐标是(t,t3),则M(t,t22t3),因为p在第四象限,所以PM=(t3)(t22t3)=t2+3t,当t=时,二次函数的最大值,即PM最长值为=,则SABM=SBPM+SAPM=(3)存在,理由如下:PMOB,当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,当P在第四象限:PM=OB=3,PM最长时只有,所以不可能有PM=3当P在第一象

13、限:PM=OB=3,(t22t3)(t3)=3,解得t1=,t2=(舍去),所以P点的横坐标是;当P在第三象限:PM=OB=3,t23t=3,解得t1=(舍去),t2=,所以P点的横坐标是所以P点的横坐标是或【例题3】分析:(1)首先根据OA的旋转条件确定B点位置,然后过B做x轴的垂线,通过构建直角三角形和OB的长(即OA长)确定B点的坐标(2)已知O、A、B三点坐标,利用待定系数法求出抛物线的解析式(3)根据(2)的抛物线解析式,可得到抛物线的对称轴,然后先设出P点的坐标,而O、B坐标已知,可先表示出OPB三边的边长表达式,然后分OP=OB、OP=BP、OB=BP三种情况分类讨论,然后分辨是

14、否存在符合条件的P点解答:解:(1)如图,过B点作BCx轴,垂足为C,则BCO=90,AOB=120,BOC=60,又OA=OB=4,OC=OB=4=2,BC=OBsin60=4=2,点B的坐标为(2,2);(2)抛物线过原点O和点A、B,可设抛物线解析式为y=ax2+bx,将A(4,0),B(22)代入,得,解得,此抛物线的解析式为y=x2+x(3)存在,如图,抛物线的对称轴是直线x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y),若OB=OP,则22+|y|2=42,解得y=2,当y=2时,在RtPOD中,PDO=90,sinPOD=,POD=60,POB=POD+AOB=60+

15、120=180,即P、O、B三点在同一直线上,y=2不符合题意,舍去,点P的坐标为(2,2)若OB=PB,则42+|y+2|2=42,解得y=2,故点P的坐标为(2,2),若OP=BP,则22+|y|2=42+|y+2|2,解得y=2,故点P的坐标为(2,2),综上所述,符合条件的点P只有一个,其坐标为(2,2),【例题5】【考点:二次函数综合题专题:压轴题】分析:(1)设直线BC的解析式为y=mx+n,将B(5,0),C(0,5)两点的坐标代入,运用待定系数法即可求出直线BC的解析式;同理,将B(5,0),C(0,5)两点的坐标代入y=x2+bx+c,运用待定系数法即可求出抛物线的解析式;(

16、2)MN的长是直线BC的函数值与抛物线的函数值的差,据此可得出一个关于MN的长和M点横坐标的函数关系式,根据函数的性质即可求出MN的最大值;(3)先求出ABN的面积S2=5,则S1=6S2=30再设平行四边形CBPQ的边BC上的高为BD,根据平行四边形的面积公式得出BD=3,过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形证明EBD为等腰直角三角形,则BE=BD=6,求出E的坐标为(1,0),运用待定系数法求出直线PQ的解析式为y=x1,然后解方程组,即可求出点P的坐标解答:(1)设直线BC的解析式为y=mx+n,将B(5,0),

17、C(0,5)两点的坐标代入,得,解得,所以直线BC的解析式为y=x+5;将B(5,0),C(0,5)两点的坐标代入y=x2+bx+c,得,解得,所以抛物线的解析式为y=x26x+5;(2)设M(x,x26x+5)(1x5),则N(x,x+5),MN=(x+5)(x26x+5)=x2+5x=(x)2+,当x=时,MN有最大值;(3)MN取得最大值时,x=2.5,x+5=2.5+5=2.5,即N(2.5,2.5)解方程x26x+5=0,得x=1或5A(1,0),B(5,0),AB=51=4,ABN的面积S2=42.5=5,平行四边形CBPQ的面积S1=6S2=30设平行四边形CBPQ的边BC上的高

18、为BD,则BCBDBC=5,BCBD=30,BD=3过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形BCBD,OBC=45,EBD=45,EBD为等腰直角三角形,BE=BD=6,B(5,0),E(1,0),设直线PQ的解析式为y=x+t,将E(1,0)代入,得1+t=0,解得t=1直线PQ的解析式为y=x1解方程组,得,点P的坐标为P1(2,3)(与点D重合)或P2(3,4)【巩固6】如图,抛物线y=ax2+bx+c(a0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC(1)求直线CD的解析式;(2)

19、求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45所得直线与抛物线相交于另一点E,求证:CEQCDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由分析: (1)利用待定系数法求出直线解析式;(2)利用待定系数法求出抛物线的解析式;(3)关键是证明CEQ与CDO均为等腰直角三角形;(4)如答图所示,作点C关于直线QE的对称点C,作点C关于x轴的对称点C,连接CC,交OD于点F,交QE于点P,则PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,PCF的周

20、长等于线段CC的长度利用轴对称的性质、两点之间线段最短可以证明此时PCF的周长最小如答图所示,利用勾股定理求出线段CC的长度,即PCF周长的最小值解答:解:(1)C(0,1),OD=OC,D点坐标为(1,0)设直线CD的解析式为y=kx+b(k0),将C(0,1),D(1,0)代入得:,解得:b=1,k=1,直线CD的解析式为:y=x+1(2)设抛物线的解析式为y=a(x2)2+3,将C(0,1)代入得:1=a(2)2+3,解得a=y=(x2)2+3=x2+2x+1(3)证明:由题意可知,ECD=45,OC=OD,且OCOD,OCD为等腰直角三角形,ODC=45,ECD=ODC,CEx轴,则点

21、C、E关于对称轴(直线x=2)对称,点E的坐标为(4,1)如答图所示,设对称轴(直线x=2)与CE交于点M,则M(2,1),ME=CM=QM=2,QME与QMC均为等腰直角三角形,QEC=QCE=45又OCD为等腰直角三角形,ODC=OCD=45,QEC=QCE=ODC=OCD=45,CEQCDO(4)存在如答图所示,作点C关于直线QE的对称点C,作点C关于x轴的对称点C,连接CC,交OD于点F,交QE于点P,则PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,PCF的周长等于线段CC的长度(证明如下:不妨在线段OD上取异于点F的任一点F,在线段QE上取异于点P的任一点P,连接FC,FP,PC由轴对称的性质可知,PCF的周长=FC+FP+PC;而FC+FP+PC是点C,C之间的折线段,由两点之间线段最短可知:FC+FP+PCCC,即PCF的周长大于PCE的周长)如答图所示,连接CE,C,C关于直线QE对称,QCE为等腰直角三角形,QCE为等腰直角三角形,CEC为等腰直角三角形,点C的坐标为(4,5);C,C关于x轴对称,点C的坐标为(0,1)过点C作CNy轴于点N,则NC=4,NC=4+1+1=6,在RtCNC中,由勾股定理得:CC=综上所述,在P点和F点移动过程中,PCF的周长存在最小值,最小值为专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 教育教学

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁