《数学模型与建模概论.ppt》由会员分享,可在线阅读,更多相关《数学模型与建模概论.ppt(43页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、数学模型与建模概论中中 国国 药药 科科 大大 学学 言方荣等言方荣等言方荣等言方荣等 编制编制编制编制一、数学的重大作用一、数学的重大作用v计算机的迅速发展和普及,大大增强了数学解决现计算机的迅速发展和普及,大大增强了数学解决现实问题的能力。实问题的能力。v数学向社会、经济和自然界各个领域的渗透,扩展数学向社会、经济和自然界各个领域的渗透,扩展了数学与实际的接触面。产生了如数量经济学、数了数学与实际的接触面。产生了如数量经济学、数学生态学、数学地质学、数学心理学和数学语言学学生态学、数学地质学、数学心理学和数学语言学等边缘学科等边缘学科知识经济时代知识经济时代信息社会信息社会v国家的繁荣富强
2、,关键在于高新的科学技术和高效率的经济国家的繁荣富强,关键在于高新的科学技术和高效率的经济管理。管理。v高新技术的基础是应用科学,而应用科学的基础是数学。高新技术的基础是应用科学,而应用科学的基础是数学。定量化与数学定量化与数学v当代社会和经济发展的一个特点就是定量化和定量当代社会和经济发展的一个特点就是定量化和定量思维的不断加强思维的不断加强v事物之间的联系规律和事物本身的变化规律事物之间的联系规律和事物本身的变化规律,必蕴含必蕴含着一定的数量关系和空间结构,而数学正是反映这着一定的数量关系和空间结构,而数学正是反映这些关系的学科,是对其中有关的空间结构、数量关些关系的学科,是对其中有关的空
3、间结构、数量关系的共性不断地抽象、升华。系的共性不断地抽象、升华。数学的显著特点:数学的显著特点:v思维的抽象性思维的抽象性v推理的严谨性推理的严谨性v结论的明确性结论的明确性v应用的广泛性应用的广泛性现代科技人员所应现代科技人员所应具备具备工作素质工作素质v直观思维直观思维v逻辑推理逻辑推理v精确计算精确计算v结论明确等结论明确等如果没有一定的数学训练和数学应用基础是难以具备如果没有一定的数学训练和数学应用基础是难以具备的。的。如何应用数学来解决实际问题如何应用数学来解决实际问题v数学模型是应用数学知识和计算机解决实际数学模型是应用数学知识和计算机解决实际问题的重要手段和桥梁。问题的重要手段
4、和桥梁。数学模型的广泛应用数学模型的广泛应用v生理医药学家有了药物浓度在人体内随时间和生理医药学家有了药物浓度在人体内随时间和空间变化的数学模型,就可以分析药物的疗效,空间变化的数学模型,就可以分析药物的疗效,有效地指导临床用药有效地指导临床用药v城市规划工作者需要建立一个包括人口、经济、城市规划工作者需要建立一个包括人口、经济、交通、环境等大系统的数学模型,为领导层对交通、环境等大系统的数学模型,为领导层对城市发展规划的决策提供科学根据城市发展规划的决策提供科学根据v厂长经理们要是能够根据产品的需求状况、生厂长经理们要是能够根据产品的需求状况、生产条件和成本、贮存费用等信息,掌握了他们产条件
5、和成本、贮存费用等信息,掌握了他们的工厂、企业的生产与销售的数学模型,他们的工厂、企业的生产与销售的数学模型,他们就可以用计算机控制生产、销售以获取尽可能就可以用计算机控制生产、销售以获取尽可能高的经济收益,增强他们的经济竞争力高的经济收益,增强他们的经济竞争力科学史上成功地应用数学的典范科学史上成功地应用数学的典范 十七世纪伟大的科学家十七世纪伟大的科学家Newton在研究受迫运在研究受迫运动时发明了微积分,并以此为工具建立了以三大运动时发明了微积分,并以此为工具建立了以三大运动定律与万有引力定律为核心的一个完整的力学理动定律与万有引力定律为核心的一个完整的力学理论体系,给出了地球表面和太阳
6、系里一切宏观物体论体系,给出了地球表面和太阳系里一切宏观物体机械运动的一个数学模型。机械运动的一个数学模型。二、从现实对象到数学模型二、从现实对象到数学模型1原型与模型原型与模型v我们经常使用模型的思想来认识世界和改造世界,我们经常使用模型的思想来认识世界和改造世界,而模型是针对原型而言的。而模型是针对原型而言的。v原型是指人们在社会活动和生产实践中所关心和研原型是指人们在社会活动和生产实践中所关心和研究的实际对象。究的实际对象。在科技领域常常用系统或过程等术语,如机械系统、电在科技领域常常用系统或过程等术语,如机械系统、电力系统、生态系统、交通系统、社会经济系统等力系统、生态系统、交通系统、
7、社会经济系统等;如导弹如导弹飞行过程、化学反应过程、人口增长过程、污染扩散过飞行过程、化学反应过程、人口增长过程、污染扩散过程等等。程等等。模模 型型v模型是人们对原型的近似抽象和描述。它是为了某模型是人们对原型的近似抽象和描述。它是为了某个特定目的将原型的其一部分信息简缩、提炼而构个特定目的将原型的其一部分信息简缩、提炼而构造的原型替代物。造的原型替代物。v航空模型航空模型v城市交通模型城市交通模型 城市交通图城市交通图模型与原型的关系模型与原型的关系v模型来源于原型,但它不是对原型简单的模仿,它是人们为模型来源于原型,但它不是对原型简单的模仿,它是人们为了认识和理解原型而对它所作的一个抽象
8、、升华。了认识和理解原型而对它所作的一个抽象、升华。v它就可以使我们通过对原型的分析研究加深对原型的理解和它就可以使我们通过对原型的分析研究加深对原型的理解和认识。认识。2模型的形式模型的形式v 模型有各种形式模型有各种形式v用模型替代原型的方式来分类,模型可以分为用模型替代原型的方式来分类,模型可以分为物质模型物质模型(形象模型或具体模型)形象模型或具体模型)v直观模型(缩尺模型)直观模型(缩尺模型)v物理模型(模拟模型)等物理模型(模拟模型)等理想模型理想模型(抽象模型抽象模型)v思维模型思维模型v符号模型符号模型v数学模型等。数学模型等。三、数学模型三、数学模型v数学模型是指通过抽象和简
9、化,使用数学语言和方数学模型是指通过抽象和简化,使用数学语言和方法对实际现象的一个近似刻划,以便于人仰更深刻法对实际现象的一个近似刻划,以便于人仰更深刻地认识所研究的对象。地认识所研究的对象。v是对现实对象的信息通过提炼、分析、归纳、翻译是对现实对象的信息通过提炼、分析、归纳、翻译的结果。通过数学上的演绎推理和分析求解,使得的结果。通过数学上的演绎推理和分析求解,使得我们能够深化对所研究的实际问题的认识。我们能够深化对所研究的实际问题的认识。数学模型举例数学模型举例v力学中著名的牛顿第二定律力学中著名的牛顿第二定律 F=ma描述受力物体的运动规律描述受力物体的运动规律v描述人口增长规律的数学模
10、型描述人口增长规律的数学模型 dN(t)/dt=rN(t)揭示人口成等比级数的增长的规律揭示人口成等比级数的增长的规律数学建模基础数学建模基础v数学是人们掌握和使用数学模型这个工具的必数学是人们掌握和使用数学模型这个工具的必要条件和重要的基础。要条件和重要的基础。广博的数学知识广博的数学知识严格数理逻辑思维严格数理逻辑思维数学模型本身的数学特征等数学模型本身的数学特征等v数学数学+计算机应用技术计算机应用技术+应用专业知识应用专业知识 +数模分析数模分析“用数学用数学”与与“学数学学数学”v数学模型是使用数学来解决实际问题的桥梁。数学模型是使用数学来解决实际问题的桥梁。对它的分析和研究的目的是
11、解决实际问题。对它的分析和研究的目的是解决实际问题。v数学模型并不就是数学应用题,更不是套公式数学模型并不就是数学应用题,更不是套公式的问题。的问题。v掌握使用数学去建立模型以解决实际问题所需掌握使用数学去建立模型以解决实际问题所需的技能与理解数学概念、证明定理、求解方程的技能与理解数学概念、证明定理、求解方程所需的技巧也是迥然不同的。所需的技巧也是迥然不同的。广义数学广义数学v这里的数学是广义数学,不仅包括经典数学这里的数学是广义数学,不仅包括经典数学P,还包括统计学,还包括统计学S、应用数学、应用数学A、计算数学、计算数学N等。等。P A S N 建立数学模型的全过程建立数学模型的全过程
12、v 可分为表述、求解、解释、验证可分为表述、求解、解释、验证几个阶段,完成从现实对象到数学几个阶段,完成从现实对象到数学模型,再从数学模型回到现实对象模型,再从数学模型回到现实对象的循环的循环 四、数学建模的方法和步骤四、数学建模的方法和步骤1.建立数学模型的方法建立数学模型的方法v机理分析方法(演绎推理)机理分析方法(演绎推理)是根据对现实对象特性的认识,分析其因果关系,是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的找出反映内部机理的规律,建立的模型常有明确的物理或现实意义物理或现实意义v测试分析方法(归纳总结)测试分析方法(归纳总结)内部机理无法直
13、接寻求,可以测量系统的有关数据,内部机理无法直接寻求,可以测量系统的有关数据,并运用统计分析等方法,按照事先确定的准则求出并运用统计分析等方法,按照事先确定的准则求出数据拟合得最好的模型数据拟合得最好的模型v常将这两种方法结合起来进行建模常将这两种方法结合起来进行建模用机理分析建立模型的结构,用测试分析确定模型用机理分析建立模型的结构,用测试分析确定模型的参数的参数 2.数学建模的一般步骤数学建模的一般步骤 模型准备模型准备模型假设模型假设模型构成模型构成模型求解模型求解 模型分析模型分析 no模型检验模型检验 yes 模型应用模型应用 模型准备模型准备 v首先要了解问题的实际背景首先要了解问
14、题的实际背景v明确建模的目的明确建模的目的v 搜集建模必需的各种信息如现象、数据等搜集建模必需的各种信息如现象、数据等v尽量弄清对象的特征,尽量弄清对象的特征,由此初步确定用哪一类模型由此初步确定用哪一类模型 模型假设模型假设 v 根据对象的特征和建模的目的,对问题进行必根据对象的特征和建模的目的,对问题进行必要的、合理的简化要的、合理的简化v用精确的语言作出假设,是建模的关键用精确的语言作出假设,是建模的关键v作假设的依据作假设的依据出于对问题内在规律的认识出于对问题内在规律的认识来自对数据或现象的分析来自对数据或现象的分析 模型构成模型构成 v根据所作的假设分析对象的因果关系,利用对根据所
15、作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量象的内在规律和适当的数学工具,构造各个量(常量和变量常量和变量)之间的等式之间的等式(或不等式或不等式)关系或其关系或其他数学结构他数学结构v相似类比法,即根据不同对象的某些相似性,相似类比法,即根据不同对象的某些相似性,借用已知领域的数学模型,来构造模型方法借用已知领域的数学模型,来构造模型方法v尽量采用简单的数学工具尽量采用简单的数学工具 模型求解模型求解 v采用解方程、画图形、证明定理、逻辑运算、采用解方程、画图形、证明定理、逻辑运算、数值计算、统计分析等各种传统的和近代的数值计算、统计分析等各种传统的和近代的数学
16、方法数学方法v特别是应用计算机技术特别是应用计算机技术 模型分析模型分析 v对模型解答进行数学上的分析,对模型解答进行数学上的分析,v常常需要进行误差分析、模型对数据的稳定性或灵常常需要进行误差分析、模型对数据的稳定性或灵敏性分析等敏性分析等 模型检验模型检验 v把数学上分析的结果翻译回到实际问题,并用实际把数学上分析的结果翻译回到实际问题,并用实际的现象、数据与之比较,检验模型的合理性和适用的现象、数据与之比较,检验模型的合理性和适用性。性。v这一步对于建模的成败是非常重要的这一步对于建模的成败是非常重要的v模型检验的结果如果不符合实际,问题通常出在模模型检验的结果如果不符合实际,问题通常出
17、在模型假设上型假设上 模型应用模型应用 v 应用的方式取决于应用的方式取决于问题的性质问题的性质建模的目的建模的目的 用建模方法解决实际问题用建模方法解决实际问题v首先是用数学语言表述问题即构造模型首先是用数学语言表述问题即构造模型v其次才是用数学工具求解构成的模型其次才是用数学工具求解构成的模型数学建模的基础数学建模的基础v用数学语言表述问题,包括模型假设、模型用数学语言表述问题,包括模型假设、模型构造等,需要构造等,需要广博的知识广博的知识(包括数学知识和各种实际知识包括数学知识和各种实际知识)足够的经验足够的经验丰富的想象力丰富的想象力敏锐的洞察力敏锐的洞察力直觉和灵感直觉和灵感五、数学
18、模型的分类五、数学模型的分类数学模型可以按照不同的方式分类数学模型可以按照不同的方式分类按照模型的应用领域分类按照模型的应用领域分类v如人口模型、交通模型、环境模型、生态模如人口模型、交通模型、环境模型、生态模型、城镇规划模型、再生资源利用模型、污型、城镇规划模型、再生资源利用模型、污染模型等染模型等v范畴更大一些则形成许多边缘学科,范畴更大一些则形成许多边缘学科,如生物数学、医药数学、地质数学、数量经如生物数学、医药数学、地质数学、数量经济学、数学社会学等济学、数学社会学等按照建立模型的数学方法分类按照建立模型的数学方法分类v初等数学模型初等数学模型v几何模型几何模型v微分方程模型微分方程模
19、型v统计模型统计模型v图论模型图论模型v马氏链模型马氏链模型v规划论模型等规划论模型等按照模型的表现特性分类按照模型的表现特性分类v确定性模型和随机性模型确定性模型和随机性模型 取决于是否考虑随机因素的影响取决于是否考虑随机因素的影响v静态模型和动态模型静态模型和动态模型 取决于是否考虑时间因素引起的变化取决于是否考虑时间因素引起的变化v 线性模型和非线性模型线性模型和非线性模型 取决于模型的基本关系取决于模型的基本关系v 离散模型和连续模型离散模型和连续模型取决于模型中变量取决于模型中变量(主要是时间变量主要是时间变量)的取值的取值按照建模目的分类按照建模目的分类v描述模型描述模型v分析模型
20、分析模型v预报模型预报模型v优化模型优化模型v决策模型决策模型v控制模型等控制模型等按照对模型结构了解程度分类按照对模型结构了解程度分类v白箱模型白箱模型:通常是指一些机理已较为清楚的问题,如力学、电学、机械等学科所研究的问题。这类模型模型大多已基本确定,主要研究的是如何优化设计和控制的问题。v灰箱模型灰箱模型:于白箱模型和黑箱模型之间的是灰箱模型,主要是指经济、气象、生态、地质等领域的问题。v黑箱模型黑箱模型:主要是指生命、医学、心理、社会等领域机理不清楚的问题。六、数学模型课与能力培养六、数学模型课与能力培养数学建模课的开设目的数学建模课的开设目的v是为了把学生学习过的和将在本课程中学习的
21、数学是为了把学生学习过的和将在本课程中学习的数学方法和知识与周围的现实世界联系起来,甚至和少方法和知识与周围的现实世界联系起来,甚至和少数真正的实际应用问题联系起来,数真正的实际应用问题联系起来,v不仅使学生知道数学有用、怎样用,更知道在真正不仅使学生知道数学有用、怎样用,更知道在真正的应用中还要继续学习。的应用中还要继续学习。努力培养学生的有关能力努力培养学生的有关能力v1.培养培养“翻译翻译”的能力,即把经过一定抽象简化的实的能力,即把经过一定抽象简化的实际问题用数学的语言表达出来形成数学模型,对数模际问题用数学的语言表达出来形成数学模型,对数模结果能用结果能用常人常人能懂的语言能懂的语言
22、翻译翻译(表达表达)出来。出来。v 2.应用已学到的数学方法和思想进行综合应用和分析,应用已学到的数学方法和思想进行综合应用和分析,并能理解合理的抽象和简化。并能理解合理的抽象和简化。v 3.发展联想能力。发展联想能力。v 4.逐渐发展形成一种洞察能力逐渐发展形成一种洞察能力(或叫洞察力或叫洞察力),即一眼即一眼就能抓住就能抓住(或部分抓住或部分抓住)要点的能力。要点的能力。v5.熟练使用现代技术手段熟练使用现代技术手段(在目前主要是计算机及相应在目前主要是计算机及相应的各种数学软件包的各种数学软件包)。七、数学软件与数学建模MathematicaMathcadMATLABSASSPSS LINGO9.0