高三数学二轮复习-第1部分-专题5-突破点15-圆锥曲线中的综合问题(酌情自选)-理(共9页).doc

上传人:飞****2 文档编号:5323798 上传时间:2022-01-02 格式:DOC 页数:9 大小:265KB
返回 下载 相关 举报
高三数学二轮复习-第1部分-专题5-突破点15-圆锥曲线中的综合问题(酌情自选)-理(共9页).doc_第1页
第1页 / 共9页
高三数学二轮复习-第1部分-专题5-突破点15-圆锥曲线中的综合问题(酌情自选)-理(共9页).doc_第2页
第2页 / 共9页
点击查看更多>>
资源描述

《高三数学二轮复习-第1部分-专题5-突破点15-圆锥曲线中的综合问题(酌情自选)-理(共9页).doc》由会员分享,可在线阅读,更多相关《高三数学二轮复习-第1部分-专题5-突破点15-圆锥曲线中的综合问题(酌情自选)-理(共9页).doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上突破点15圆锥曲线中的综合问题(酌情自选)提炼1解答圆锥曲线的定值、定点问题,从三个方面把握(1)从特殊开始,求出定值,再证明该值与变量无关(2)直接推理、计算,在整个过程中消去变量,得定值(3)在含有参数的曲线方程里面,把参数从含有参数的项里面分离出来,并令其系数为零,可以解出定点坐标.提炼2用代数法求最值与范围问题时从下面几个方面入手(1)若直线和圆锥曲线有两个不同的交点,则可以利用判别式求范围(2)若已知曲线上任意一点、一定点或与定点构成的图形,则利用圆锥曲线的性质(性质中的范围)求解(3)利用隐含或已知的不等关系式直接求范围(4)利用基本不等式求最值与范围(5

2、)利用函数值域的方法求最值与范围.提炼3与圆锥曲线有关的探索性问题(1)给出问题的一些特殊关系,要求探索出一些规律,并能论证所得规律的正确性通常要对已知关系进行观察、比较、分析,然后概括出一般规律(2)对于只给出条件,探求“是否存在”类型问题,一般要先对结论作出肯定存在的假设,然后由假设出发,结合已知条件进行推理,若推出相符的结论,则存在性得到论证;若推出矛盾,则假设不存在回访1圆锥曲线的定值、定点问题1(2015全国卷)已知椭圆C:1(ab0)的离心率为,点(2,)在C上(1)求C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率

3、与直线l的斜率的乘积为定值解(1)由题意有,1,2分解得a28,b24.3分所以C的方程为1.4分(2)证明:设直线l:ykxb(k0,b0),A(x1,y1),B(x2,y2),M(xM,yM)将ykxb代入1,得(2k21)x24kbx2b280.6分故xM,yMkxMb.8分于是直线OM的斜率kOM,即kOMk.11分所以直线OM的斜率与直线l的斜率的乘积为定值.12分回访2圆锥曲线中的最值与范围问题2(2014北京高考)已知椭圆C:x22y24.(1)求椭圆C的离心率;(2)设O为原点,若点A在直线y2上,点B在椭圆C上,且OAOB,求线段AB长度的最小值解(1)由题意,椭圆C的标准方

4、程为1,2分所以a24,b22,从而c2a2b22.因此a2,c.故椭圆C的离心率e.5分(2)设点A,B的坐标分别为(t,2),(x0,y0),其中x00.因为OAOB,所以0,即tx02y00,解得t.7分又x2y4,所以|AB|2(x0t)2(y02)22(y02)2xy4x44(0x4).12分因为4(0b0)的离心率是,点P(0,1)在短轴CD上,且1.(1)求椭圆E的方程;(2)设O为坐标原点,过点P的动直线与椭圆交于A,B两点是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由解(1)由已知,点C,D的坐标分别为(0,b),(0,b)又点P的坐标为(0,1),且1,于是

5、解得a2,b.所以椭圆E的方程为1.4分(2)当直线AB的斜率存在时,设直线AB的方程为ykx1,A,B的坐标分别为(x1,y1),(x2,y2)联立得(2k21)x24kx20.其判别式(4k)28(2k21)0,所以x1x2,x1x2.6分从而,x1x2y1y2x1x2(y11)(y21)(1)(1k2)x1x2k(x1x2)12.9分所以,当1时,23.此时,3为定值.10分当直线AB斜率不存在时,直线AB即为直线CD.此时,213.12分故存在常数1,使得为定值3.13分热点题型1圆锥曲线中的定值问题题型分析:圆锥曲线中的定值问题是近几年高考的热点内容,解决这类问题的关键是引入变化的参

6、数表示直线方程、数量积、比例关系等,根据等式恒成立,数式变换等寻找不受参数影响的量.(2016重庆二模)已知椭圆C:1(ab0)上一点P与椭圆右焦点的连线垂直于x轴,直线l:ykxm与椭圆C相交于A,B两点(均不在坐标轴上)(1)求椭圆C的标准方程;(2)设O为坐标原点,若AOB的面积为,试判断直线OA与OB的斜率之积是否为定值? 【导学号:】解(1)由题意知解得3分椭圆C的标准方程为1.4分(2)设点A(x1,y1),B(x2,y2),由得(4k23)x28kmx4m2120,5分由(8km)216(4k23)(m23)0,得m24k23.6分x1x2,x1x2,SOAB|m|x1x2|m|

7、,8分化简得4k232m20,满足0,从而有4k2m2m23(*),9分kOAkOB,由(*)式,得1,kOAkOB,即直线OA与OB的斜率之积为定值.12分求解定值问题的两大途径1.2先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值变式训练1(2016北京高考)已知椭圆C:1过A(2,0),B(0,1)两点(1)求椭圆C的方程及离心率;(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值解(1)由题意得a2,b1,椭圆C的方程为y21.3分又c,离心率e.5分(2)

8、证明:设P(x0,y0)(x00,y00),则x4y4.6分又A(2,0),B(0,1),直线PA的方程为y(x2)令x0,得yM,从而|BM|1yM1.9分直线PB的方程为yx1.令y0,得xN,从而|AN|2xN2.12分四边形ABNM的面积S|AN|BM|2.从而四边形ABNM的面积为定值.14分热点题型2圆锥曲线中的最值、范围问题题型分析:圆锥曲线中的最值、范围问题是高考重点考查的内容,解决此类问题常用的方法是几何法和代数法.(2016全国乙卷)设圆x2y22x150的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(1)证明|EA

9、|EB|为定值,并写出点E的轨迹方程;(2)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围解(1)因为|AD|AC|,EBAC,所以EBDACDADC,所以|EB|ED|,故|EA|EB|EA|ED|AD|.又圆A的标准方程为(x1)2y216,从而|AD|4,所以|EA|EB|4.2分由题设得A(1,0),B(1,0),|AB|2,由椭圆定义可得点E的轨迹方程为1(y0).4分(2)当l与x轴不垂直时,设l的方程为yk(x1)(k0),M(x1,y1),N(x2,y2)由得(4k23)x28k2x4k2120,则x1

10、x2,x1x2.所以|MN|x1x2|.过点B(1,0)且与l垂直的直线m:y(x1),点A到直线m的距离为,6分所以|PQ|24.故四边形MPNQ的面积S|MN| PQ|12.8分可得当l与x轴不垂直时,四边形MPNQ面积的取值范围为(12,8).10分当l与x轴垂直时,其方程为x1,|MN|3,|PQ|8,故四边形MPNQ的面积为12.综上,四边形MPNQ面积的取值范围为12,8).12分与圆锥曲线有关的取值范围问题的三种解法1数形结合法:利用待求量的几何意义,确定出极端位置后数形结合求解2构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解3构建函数法:先引入变量构建以待

11、求量为因变量的函数,再求其值域变式训练2(名师押题)已知抛物线C:x22py(p0),过其焦点作斜率为1的直线l交抛物线C于M,N两点,且|MN|16.(1)求抛物线C的方程;(2)已知动圆P的圆心在抛物线C上,且过定点D(0,4),若动圆P与x轴交于A,B两点,求的最大值解(1)设抛物线的焦点为F,则直线l:yx.由得x22pxp20,x1x22p,y1y23p,|MN|y1y2p4p16,p4,抛物线C的方程为x28y.4分(2)设动圆圆心P(x0,y0),A(x1,0),B(x2,0),则x8y0,且圆P:(xx0)2(yy0)2x(y04)2,令y0,整理得x22x0xx160,解得x

12、1x04,x2x04,6分设t,当x00时,t1,7分当x00时,t.x00,x08,t1,且t1,综上知1t1.9分f(t)t在1,1上单调递减,t12,当且仅当t1,即x04时等号成立的最大值为2.12分热点题型3圆锥曲线中的探索性问题题型分析:探索性问题一般分为探究条件和探究结论两种类型,若探究条件,则可先假设条件成立,再验证结论是否成立,成立则存在,否则不存在.若探究结论,则应先写出结论的表达式,再针对表达式进行讨论,往往涉及对参数的讨论.(2016长沙二模)如图152,在平面直角坐标系xOy中,已知F1,F2分别是椭圆E:1(ab0)的左、右焦点,A,B分别是椭圆E的左、右顶点,D(

13、1,0)为线段OF2的中点,且50.图152(1)求椭圆E的方程;(2)若M为椭圆E上的动点(异于点A,B),连接MF1并延长交椭圆E于点N,连接MD,ND并分别延长交椭圆E于点P,Q,连接PQ,设直线MN,PQ的斜率存在且分别为k1,k2.试问是否存在常数,使得k1k20恒成立?若存在,求出的值;若不存在,说明理由解题指导(1)50(2)解(1)50,5,ac5(ac),化简得2a3c,又点D(1,0)为线段OF2的中点,c2,从而a3,b,左焦点F1(2,0),故椭圆E的方程为1.4分(2)假设存在满足条件的常数,使得k1k20恒成立,设M(x1,y1),N(x2,y2),P(x3,y3)

14、,Q(x4,y4),则直线MD的方程为xy1,代入椭圆方程1,整理得,y2y40,6分y1y3,y3,从而x3,故点P,同理,点Q.8分三点M,F1,N共线,从而x1y2x2y12(y1y2),从而k2,故k10,从而存在满足条件的常数,.12分探索性问题求解的思路及策略1思路:先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在2策略:(1)当条件和结论不唯一时要分类讨论;(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件变式训练3(2016哈尔滨二模)已知椭圆C:1(ab0)的焦点分别为F1(,0),F2(,0),点P在椭圆C上,满足|PF1|7|PF2|

15、,tanF1PF24.(1)求椭圆C的方程;(2)已知点A(1,0),试探究是否存在直线l:ykxm与椭圆C交于D,E两点,且使得|AD|AE|?若存在,求出k的取值范围;若不存在,请说明理由. 【导学号:】解(1)由|PF1|7|PF2|,PF1PF22a得PF1,PF2.2分由余弦定理得cosF1PF,a2,所求C的方程为y21.4分(2)假设存在直线l满足题设,设D(x1,y1),E(x2,y2),将ykxm代入y21并整理得(14k2)x28kmx4m240,由64k2m24(14k2)(4m24)16(m24k21)0,得4k21m2.6分又x1x2.设D,E中点为M(x0,y0),M,kAMk1,得m,8分将代入得4k212,化简得20k4k210(4k21)(5k21)0,解得k或k,所以存在直线l,使得|AD|AE|,此时k的取值范围为.12分专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 教育教学

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁