(8.2.1)--8.2BasicsofNLP.pdf

上传人:刘静 文档编号:52847373 上传时间:2022-10-24 格式:PDF 页数:12 大小:1.25MB
返回 下载 相关 举报
(8.2.1)--8.2BasicsofNLP.pdf_第1页
第1页 / 共12页
(8.2.1)--8.2BasicsofNLP.pdf_第2页
第2页 / 共12页
点击查看更多>>
资源描述

《(8.2.1)--8.2BasicsofNLP.pdf》由会员分享,可在线阅读,更多相关《(8.2.1)--8.2BasicsofNLP.pdf(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、Bag of WordsA model that allows us to count all words in apiece of textCreating an occurrence matrix for the sentenceor documentBag of WordsSentences:1.Jim and Pam traveled by bus.2.The train was late.3.The flight was full.Traveling by flight isexpensive.ExampleBasic structure for a bag of wordsWord

2、s with frequenciesCombination of words Bag of wordsTF-IDFTF:Term Frequency.If a particular word appears multiple times in adocument,then it might have higher importance than the otherwords that appear fewer timesIDF:Inverse Document Frequency.If a particular word appearsmany times in a document,but

3、it is also present many times insome other documents,then maybe that word is frequent,so wecannot assign much importance to itTF-IDFSentences:1.This is the first document.2.This document is the second document.ExampleResulting Multiplication of TF-IDFTF-IDF using a logTokenizationTokenization is the

4、 process of segmenting running text into sentencesand words.In essence,its the task of cutting a text into pieces calledtokens,and at the same time throwing away certain characters,such aspunctuation.Sentences:1.This is the first document.2.This document is the second document.Thisisthefirstdocument

5、ThisisthedocumentseconddocumentStop Words RemovalSome very common words that appear to provide little orno value to the NLP objective are filtered and excludedfromthetexttobeprocessed,henceremovingwidespread and frequent terms that are not informativeabout the corresponding text.Stop words can be sa

6、fely ignored by carrying out alookup in a pre-defined list of keywords,freeing updatabase space and improving processing time.Stop Words ListStemmingStemming is used to normalize words.In English and many other languages,a single word can takemultiple forms depending upon context used.studystudiesst

7、udyingstudiedLemmatizationLemmatization has the objective of reducing a word to its baseform and grouping together different forms of the same word.bankPart of Speech TaggingPart of speech tagging is crucial for syntactic and semantic analysis.Question formationVerbContainerNounChunkingChunking means to extract meaningful phrases from unstructuredtext.Categories of phrasesPhrase structure rules

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁