《《几何画板》在初中数学教学中的应用实例(共6页).doc》由会员分享,可在线阅读,更多相关《《几何画板》在初中数学教学中的应用实例(共6页).doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上几何画板在初中数学教学中的应用实例摘要:几何画板是实现“数形结合”思想的一个有效的辅助教学工具,有很强的实用性,既减轻教师的工作负担,改变教学环境又为问题的有效解决提供便利。以大信息量的储备来满足学生的需求,使学生根据自身的需要进行查阅,进行学习。只有把“几何画板”融入到几何学科的教学中去,才能使原本抽象的知识形象化,生活化。关键词:几何画板 初中数学教学 应用一、引言几何画板是实现“数形结合”思想的一个有效的辅助教学工具,有很强的实用性,既减轻教师的工作负担,改变教学环境又为问题的有效解决提供便利。利用“几何画板”绘图辅助数学教学,有着传统尺规所无法比拟的优越性。它
2、严谨的作图程序、强大的作图和计算功能,能有效地树立学生严谨、科学的作图观;有利于数与形的完美结合;有利于学生建构数学知识;有利于教师提高数学教学质量。几何画板显示画面的快捷、容量大、可储存,因此它可以提高单位时间的利用率,为知识信息量的增大提供了空间,数学学习必须因材施教。以大信息量的储备来满足学生的需求,使学生根据自身的需要进行查阅,进行学习。只有把几何画板融入到几何学科的教学中去,才能使原本抽象的知识形象化,生活化。二、几何画板的主要功能1提供了画点(任意点、中点、交点)、画圆(圆、圆弧)、画线(直线、射线、线段、平行线、角平分线、垂线)功能。通过该平台可以准确制作各种图形,初中几何中的尺
3、规作图全部可以实现,并可追踪轨迹,设置动画功能。2提供了旋转、平移、缩放、反射等图形变换功能。3提供了强大的度量功能(长度、角度、面积、半径、斜率、比例、坐标等)和计算功能(代数运算、常用十余种函数计算等),能动态演示数据变化,并可根据需要制表。4提供了图表功能,可建立直角坐标系、极坐标系,方便作出直线、二次曲线,绘制点,直接绘制函数图象。5提供了一般软件所具备的编辑功能,并能为所绘图形添加颜色,最新版对文字编辑可选择字体、字型、字号等常规的功能外,新增加了常用符号及数学公式编辑功能。插入对象功能支持“OLE”对象,如BMP位图、PowerPoint幻灯片、声音(wav)、电影(avt)、Ex
4、cel表格,Word文档,甚至可以通过打“包”直接调用应用程序,可以进行超级链接(如Internet网),并可利用剪贴板将绘制图形转换到其它Windows应用程序中,以达到交换信息的目的。三、教学中应用实例例1:在轴对称这一节中,通过按纽进行操作,使学生更直观的感受轴对称的概念与性质。例1图例2图例2:对“一次函数y=kx+b(k0)的性质”的学习,如果学生不清楚y=kx+b(k0)在k0或k<0时表示了什么样子的图像,不知道b的取值对函数图像的作用和影响,那么根据图像确定k、b的取值范围,学生解起来就会觉得棘手。其性质进行探索时,我们只要在几何画板中,设定两个参数K与b,通过改变K与b
5、的值就可以获得无数多个一次函数图象,k与b的值一发生变化,图象也以随之而变化,这个是传统教学所无法比较的。变动k与b的值,如当b=0时一次函数的图象(正比例函数y=kx)是一条经过原点的直线,当k>0时,它的图象经过第一、三象限;当k<0时,它的图象经过第二、四象限。在老师的演示下,一次函数的图象大量呈现在学生面前,学生自已动手作图与观察比较老师作图,一次函数的图及性质也可以轻松得以理解。例3:验证勾股定理。(1)任意作直角三角形,分别从三条边出发向外作正方形。(2)通过度量得出每个正方形的面积,计算S1+S2的值,与S3比较。(3)得出结论a2+b2=c2。(4)拖动任意一点,改
6、变图形大小,观察能否得出上述结论。例3图例3图例4图例4:在讨论二次函数y=ax2+bx+c(a0)或y=a(x+h)2+k(a0)中,二次函数图象与常量a、b、c、h、k之间的关系时。可作以下设计:1. 在演示画面中,实时显示抛物线的顶点坐标、与y轴的交点坐标和对称轴。2. 拖动有向线段a,改变a的取值。观察抛物线开口方向及大小。3. 归纳:当a>0时,开口向上,开口大小随a的增大而变小;当a<0时,开口向下,开口大小随a的减小而变小;当a=0时,二次函数退化成为一次函数y=kx+b。(说明:一次函数不是特殊的二次函数)4. 拖动有向线段c,改变c的取值。观察可发现抛物线随c的值
7、变大、变小而升高或降低。并可观察抛物线与y轴交点的纵坐标和c的取值相等,从而得到抛物线y=ax2+bx+c与y轴交于点(0,c)。5. 拖动有向线段h、k,改变h、k的取值。观察得抛物线随h、k的变化而左右平移或上下平移。顶点坐标是(h、k),也就是(-b/2a,(4ac-b2)/4a)。从而归纳出抛物线的顶点坐标与对称轴和h、k的关系,并将实验观察所得结论,进行推理论证。例4图例5:如图所示,根据相交弦定理,我们知道PAPBPCPD,那么,如果P点在o外,PAPBPCPD这个结论还成立吗?特别地如果P点在过A、B、C、D中某一点的切线上时,结论又怎样?”。此问题的探索大致可以按下述四个步骤进
8、行:1、测量PA、PB、PC、PD的值,并计算PAPB,PCPD;2、用鼠标将P点从圆内拖到圆外;3、观察PAPB,PCPD的值的变化情况,仔细查看当P点在圆外变动时变化了的PAPB,PCPD的值是否相等。4、得到结论。对于切线位置,可以过某一点(如C点)作圆的一条切线(CM),在该切线上任取一点H(H点最好不与C点重合),然而,用选择工具选择P点按住Shift键后再选H点,使两点都被选中,用鼠标选择【编辑】下的【操作类按钮】下的【移动】命令,为从P点移动到H点设置一个运动按钮,当双击按钮时,P会从它的当前位置移动到H点,并使P、H两点重合。通过观察PAPB,PCPD的值,可确立两者的值的关系
9、,得到结论。例5图四、运用几何画板的几点认识1几何画板在课堂教学中的运用产生了良好效应。它的启动,改变了常规教学的陈旧模式,使课堂教学更加形象和生动。实践中,学生从心理上所反映出来的是惊喜和兴奋,进而有一种强烈求知欲,它可以充分调动学生的学习积极性,同时也营造了一种学习活动的良好氛围。从知识学习的达成度看收效甚佳。2使用几何画板进行数学教学,通过具体的感性的信息呈现,能给学生留下更为深刻的印象,使学生不是把数学作为单纯的知识去理解它,而是能够更有实感的去把握它。这样,既能激发学生的情感、培养学生的兴趣,又能大大提高课堂效率,把教师群体的智慧和经验转化为一种可重复使用的教学资源,开展更富创造性的教学工作。3在具体的教学中教师不能流于形式,玩玩花样,做做表演,要真正解决实际问题,既要节省时间,又要方便,还要提高效率。利用几何画板是为了对一些学生不易掌握或不好理解的教学内容进行模拟实验,探索,让学生更直观更深刻更容易地理解和掌握所学知识,因此我们在利用它教学时,必须要在比用传统教学手段授课易让学生接受、省时省力基础上才用它。专心-专注-专业