《高一必修一基本初等函数知识点总结归纳(共5页).doc》由会员分享,可在线阅读,更多相关《高一必修一基本初等函数知识点总结归纳(共5页).doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上高一必修一函数知识点(12.1)1.1指数函数(1)根式的概念叫做根式,这里叫做根指数,叫做被开方数 当为奇数时,为任意实数;当为偶数时,根式的性质:;当为奇数时,;当为偶数时, (2)分数指数幂的概念正数的正分数指数幂的意义是:且0的正分数指数幂等于0正数的负分数指数幂的意义是:且0的负分数指数幂没有意义 注意口诀:底数取倒数,指数取相反数(3)分数指数幂的运算性质 (4)指数函数函数名称指数函数定义0101函数且叫做指数函数图象定义域值域(0,+)过定点图象过定点(0,1),即当x=0时,y=1奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况y1(x0
2、), y=1(x=0), 0y1(x0)y1(x0), y=1(x=0), 0y1(x0)变化对图象的影响在第一象限内,越大图象越高,越靠近y轴;在第二象限内,越大图象越低,越靠近x轴在第一象限内,越小图象越高,越靠近y轴;在第二象限内,越小图象越低,越靠近x轴例:比较1.2对数函数(1) 对数的定义若,则叫做以为底的对数,记作,其中叫做底数,叫做真数对数式与指数式的互化:(2)常用对数与自然对数:常用对数:,即;自然对数:,即(其中)(3)几个重要的对数恒等式: ,(4)对数的运算性质 如果,那么加法: 减法:数乘: 换底公式:(5)对数函数函数名称对数函数定义函数且叫做对数函数图象0101
3、定义域值域过定点图象过定点,即当时,奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,越大图象越靠低,越靠近x轴在第四象限内,越大图象越靠高,越靠近y轴在第一象限内,越小图象越靠低,越靠近x轴在第四象限内,越小图象越靠高,越靠近y轴(6) 反函数的求法确定反函数的定义域,即原函数的值域;从原函数式中反解出;将改写成,并注明反函数的定义域(7)反函数的性质原函数与反函数的图象关于直线对称即,若在原函数的图象上,则在反函数的图象上函数的定义域、值域分别是其反函数的值域、定义域 1.3幂函数(1)幂函数的图象(需要知道x=12,1,2,3与y=1x的图像)(2
4、)幂函数的性质图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象 过定点:图象都通过点 1.4二次函数(1)二次函数解析式的三种形式一般式:顶点式: 两根式: (2)求二次函数解析式的方法已知三个点坐标时,宜用一般式已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式若已知抛物线与轴有两个交点,且横线坐标已知时,选用两根式求更方便(3)二次函数图象的性质二次函数的图象是一条抛物线,对称轴方程为 ,顶点坐标是 。在二次函数中当时,图象与轴有 个交点当 时,图象与轴有1个交点当 时,图象与轴有没有交点当 时,抛物线开口向上,函数在上递减,在上递增,当时,f(x)min=
5、;当 时,抛物线开口向下,函数在上递增,在上递减,当时,f(x)max= (4)一元二次方程根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布 设一元二次方程的两实根为,且令,从以下四个方面来分析此类问题:开口方向: 对称轴位置: 判别式: 端点函数值符号 kx1x2 x1x2k x1kx2 af(k)0 k1x1x2k2 有且仅有一个根x1(或x2)满足k1x1(或x2)k2 f(k1)f(k2)0,并同时考虑f(k1)=0或f(k2)=0这两种情况是否也符合 k1x1k2p1x2p2 此结论可直接由推出 专心-专注-专业