《材料力学第五版习题答案.doc》由会员分享,可在线阅读,更多相关《材料力学第五版习题答案.doc(128页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、二、 轴向拉伸和压缩2-1 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。(a)解: ; ;(b)解: ; ;(c)解: ; 。(d) 解: 。 2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。若横截面面积 ,试求各横截面上的应力。解: 返回 2-3 试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。若横截面面积 , , ,并求各横截面上的应力。解: 返回2-4 图示一混合屋架结构的计算简图。屋架的上弦用钢筋混凝土制成。下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm8mm的等边角钢。已知屋面承受集度为 的竖直均布荷载。试求拉杆AE和
2、EG横截面上的应力。解: = 1) 求内力取I-I分离体 得 (拉)取节点E为分离体, 故 (拉)2) 求应力 758等边角钢的面积 A=11.5 cm2(拉)(拉)返回 2-5(2-6) 图示拉杆承受轴向拉力 ,杆的横截面面积 。如以 表示斜截面与横截面的夹角,试求当 ,30 ,45 ,60 ,90 时各斜截面上的正应力和切应力,并用图表示其方向。 解: 返回 2-6(2-8) 一木桩柱受力如图所示。柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变
3、形。解: (压) (压)返回2-7(2-9) 一根直径 、长 的圆截面杆, 承受轴向拉力 ,其伸长为 。试求杆横截面上的应力与材料的弹性模量E。解: 2-8(2-11) 受轴向拉力F作用的箱形薄壁杆如图所示。已知该杆材料的弹性常数为E, ,试求C与D两点间的距离改变量 。解: 横截面上的线应变相同因此 返回2-9(2-12) 图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量E=210GPa,已知 , , , 。试求C点的水平位移和铅垂位移。解:(1)受力图(a), 。(2)变形协调图(b)因 ,故 = (向下)(向下)为保证 ,点A移至 ,由图中几何关系知;返回第三章 扭转
4、3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-123-1 一传动轴作匀速转动,转速 ,轴上装有五个轮子,主动轮输入的功率为60kW,从动轮,依次输出18kW,12kW,22kW和8kW。试作轴的扭矩图。解: kN kN kN kN 返回3-2(3-3) 圆轴的直径 ,转速为 。若该轴横截面上的最大切应力等于 ,试问所传递的功率为多大?解: 故 即 又 故 返回 3-3(3-5) 实心圆轴的直径 mm,长 m,其两端所受外力偶矩 ,材料的切变模量 。试求:(1)最大切应力及两端截面间的相对扭转角;(2)图示截面上A,B,C三点处切应力的数值及方向
5、;(3)C点处的切应变。解: = 返回3-4(3-6) 图示一等直圆杆,已知 , , , 。试求:(1)最大切应力;(2)截面A相对于截面C的扭转角。解:(1)由已知得扭矩图(a) (2) 返回3-5(3-12) 长度相等的两根受扭圆轴,一为空心圆轴,一为实心圆轴,两者材料相同,受力情况也一样。实心轴直径为d;空心轴外径为D,内径为 ,且 。试求当空心轴与实心轴的最大切应力均达到材料的许用切应力 ),扭矩T相等时的重量比和刚度比。解:重量比= 因为 即 故 故 刚度比= = 返回3-6(3-15) 图示等直圆杆,已知外力偶矩 , , 许用切应力 ,许可单位长度扭转角 ,切变模量 。试确定该轴的
6、直径d。解:扭矩图如图(a) (1)考虑强度,最大扭矩在BC段,且 (1) (2)考虑变形 (2)比较式(1)、(2),取 返回3-7(3-16) 阶梯形圆杆,AE段为空心,外径D=140mm,内径d=100mm;BC段为实心,直径d=100mm。外力偶矩 , , 。已知: , , 。试校核该轴的强度和刚度。解:扭矩图如图(a)(1)强度= , BC段强度基本满足 = 故强度满足。(2)刚度 BC段: BC段刚度基本满足。 AE段: AE段刚度满足,显然EB段刚度也满足。返回3-8(3-17) 习题3-1中所示的轴,材料为钢,其许用切应力 ,切变模量 ,许可单位长度扭转角 。试按强度及刚度条件
7、选择圆轴的直径。解:由3-1题得: 故选用 。返回3-9(3-18) 一直径为d的实心圆杆如图,在承受扭转力偶矩 后,测得圆杆表面与纵向线成 方向上的线应变为 。试导出以 ,d和 表示的切变模量G的表达式。解:圆杆表面贴应变片处的切应力为 圆杆扭转时处于纯剪切状态,图(a)。切应变 (1)对角线方向线应变: (2)式(2)代入(1): 返回3-10(3-19) 有一壁厚为25mm、内径为250mm的空心薄壁圆管,其长度为1m,作用在轴两端面内的外力偶矩为180 。试确定管中的最大切应力,并求管内的应变能。已知材料的切变模量 。解: 3-11(3-21) 簧杆直径 mm的圆柱形密圈螺旋弹簧,受拉
8、力 作用,弹簧的平均直径为 mm,材料的切变模量 。试求:(1)簧杆内的最大切应力;(2)为使其伸长量等于6mm所需的弹簧有效圈数。解: , 故 因为 故 圈返回3-12(3-23) 图示矩形截面钢杆承受一对外力偶矩 。已知材料的切变模量 ,试求: (1)杆内最大切应力的大小、位置和方向;(2)横截面矩边中点处的切应力;(3)杆的单位长度扭转角。解: , , 由表得 MPa 返回第四章 弯曲应力 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 下页4-1(4-1) 试求图示各梁中指定截面上的剪力和弯矩。解:(a) (b) (c) (d) = (e) (f) (
9、g) (h) = 返回4-2(4-2) 试写出下列各梁的剪力方程和弯矩方程,并作剪力图和弯矩图。解:(a) (b) 时 时 (c) 时 时 (d) (e) 时, 时, (f)AB段: BC段: (g)AB段内: BC段内: (h)AB段内: BC段内: CD段内: 返回4-3(4-3) 试利用荷载集度、剪力和弯矩间的微分关系作下列各梁的剪力图和弯矩图。 返回4-4(4-4) 试作下列具有中间铰的梁的剪力图和弯矩图。返回4-5(4-6) 已知简支梁的剪力图如图所示。试作梁的弯矩图和荷载图。已知梁上没有集中力偶作用。返回4-6(4-7) 试根据图示简支梁的弯矩图作出梁的剪力图与荷载图。 返回 4-
10、7(4-15) 试作图示刚架的剪力图、弯矩图和轴力图。 返回 4-8(4-18) 圆弧形曲杆受力如图所示。已知曲杆轴线的半径为R,试写出任意横截面C上剪力、弯矩和轴力的表达式(表示成 角的函数),并作曲杆的剪力图、弯矩图和轴力图。 解:(a) (b) 返回4-9(4-19) 图示吊车梁,吊车的每个轮子对梁的作用力都是F,试问:(1)吊车在什么位置时,梁内的弯矩最大?最大弯矩等于多少?(2)吊车在什么位置时,梁的支座反力最大?最大支反力和最大剪力各等于多少?解:梁的弯矩最大值发生在某一集中荷载作用处。 ,得:当 时, 当M极大时: ,则 ,故, 故 为梁内发生最大弯矩的截面故: = 返回4-10
11、(4-21) 长度为250mm、截面尺寸为 的薄钢尺,由于两端外力偶的作用而弯成中心角为 的圆弧。已知弹性模量 。试求钢尺横截面上的最大正应力。解:由中性层的曲率公式 及横截面上最大弯曲正应力公式 得: 由几何关系得: 于是钢尺横截面上的最大正应力为: 返回第五章 梁弯曲时的位移5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-85-1(5-13) 试按迭加原理并利用附录IV求解习题5-4。 解: (向下)(向上) (逆) (逆)返回5-2(5-14) 试按迭加原理并利用附录IV求解习题5-5。解:分析梁的结构形式,而引起BD段变形的外力则如图(a)所示,即弯矩 与弯矩 。 由附录(
12、)知,跨长l的简支梁的梁一端受一集中力偶M作用时,跨中点挠度为 。用到此处再利用迭加原理得截面C的挠度 (向上)返回5-3(5-15) 试按迭加原理并利用附录IV求解习题5-10。解: 返回5-4(5-16) 试按迭加原理并利用附录IV求解习题5-7中的 。 解:原梁可分解成图5-16a和图5-16d迭加,而图5-16a又可分解成图5-16b和5-16c。由附录得返回5-5(5-18) 试按迭加原理求图示梁中间铰C处的挠度 ,并描出梁挠曲线的大致形状。已知EI为常量。解:(a)由图5-18a-1(b)由图5-18b-1 = 返回5-6(5-19) 试按迭加原理求图示平面折杆自由端截面C的铅垂位
13、移和水平位移。已知杆各段的横截面面积均为A,弯曲刚度均为EI。解: 返回5-7(5-25) 松木桁条的横截面为圆形,跨长为4m,两端可视为简支,全跨上作用有集度为 的均布荷载。已知松木的许用应力 ,弹性模量 。桁条的许可相对挠度为 。试求桁条横截面所需的直径。(桁条可视为等直圆木梁计算,直径以跨中为准。)解:均布荷载简支梁,其危险截面位于跨中点,最大弯矩为 ,根据强度条件有 从满足强度条件,得梁的直径为 对圆木直径的均布荷载,简支梁的最大挠度 为 而相对挠度为 由梁的刚度条件有 为满足梁的刚度条件,梁的直径有 由上可见,为保证满足梁的强度条件和刚度条件,圆木直径需大于 。 返回5-8(5-26
14、) 图示木梁的右端由钢拉杆支承。已知梁的横截面为边长等于0.20 m的正方形, , ;钢拉杆的横截面面积 。试求拉杆的伸长 及梁中点沿铅垂方向的位移 。 解:从木梁的静力平衡,易知钢拉杆受轴向拉力40 于是拉杆的伸长 为 = 木梁由于均布荷载产生的跨中挠度 为 梁中点的铅垂位移 等于因拉杆伸长引起梁中点的刚性位移 与中点挠度 的和,即 返回第六章 简单超静定问题 6-1 6-2 6-3 6-4 6-5 6-6 6-7 6-8 6-9 6-10 6-11 6-126-136-1 试作图示等直杆的轴力图。解:取消A端的多余约束,以 代之,则 (伸长),在外力作用下杆产生缩短变形。 因为固定端不能移
15、动,故变形协调条件为: 故 故 返回6-2 图示支架承受荷载 各杆由同一材料制成,其横截面面积分别为 , 和 。试求各杆的轴力。解:设想在荷载F作用下由于各杆的变形,节点A移至 。此时各杆的变形 及 如图所示。现求它们之间的几何关系表达式以便建立求内力的补充方程。 即: 亦即: 将 , , 代入,得:即: 亦即: (1)此即补充方程。与上述变形对应的内力 如图所示。根据节点A的平衡条件有:; 亦即: (2); , 亦即: (3)联解(1)、(2)、(3)三式得:(拉)(拉)(压)返回6-3 一刚性板由四根支柱支撑,四根支柱的长度和截面都相同,如图所示。如果荷载F作用在A点,试求这四根支柱各受力
16、多少。解:因为2,4两根支柱对称,所以 ,在F力作用下: 变形协调条件: 补充方程:求解上述三个方程得: 返回6-4 刚性杆AB的左端铰支,两根长度相等、横截面面积相同的钢杆CD和EF使该刚性杆处于水平位置,如图所示。如已知 ,两根钢杆的横截面面积 ,试求两杆的轴力和应力。解: , (1)又由变形几何关系得知:, (2)联解式(1),(2),得 , 故 , 返回6-5(6-7) 横截面为250mm250mm的短木柱,用四根40mm40mm5mm的等边角钢加固,并承受压力F,如图所示。已知角钢的许用应力 ,弹性模量 ;木材的许用应力 ,弹性模量 。试求短木柱的许可荷载 。解:(1)木柱与角钢的轴
17、力由盖板的静力平衡条件: (1)由木柱与角钢间的变形相容条件,有 (2)由物理关系: (3)式(3)代入式(2),得(4)解得: 代入式(1),得: (2)许可载荷 由角钢强度条件由木柱强度条件:故许可载荷为: 返回6-6(6-9) 图示阶梯状杆,其上端固定,下端与支座距离 。已知上、下两段杆的横截面面积分别为 和 ,材料的弹性模量 。试作图示荷载作用下杆的轴力图。解:变形协调条件 故 故 , 返回6-7(6-10) 两端固定的阶梯状杆如图所示。已知AC段和BD段的横截面面积为A,CD段的横截面面积为2A;杆材料的弹性模量为 ,线膨胀系数 -1。试求当温度升高 后,该杆各部分产生的应力。解:设
18、轴力为 ,总伸长为零,故 = = 返回6-8(6-11) 图示为一两端固定的阶梯状圆轴,在截面突变处承受外力偶矩 。若 ,试求固定端的支反力偶矩 ,并作扭矩图。解:解除B端多余约束 ,则变形协调条件为即 故: 即: 解得: 由于 故 返回6-9(6-13) 一空心圆管A套在实心圆杆B的一端,如图所示。两杆在同一横截面处各有一直径相同的贯穿孔,但两孔的中心线构成一个 角。现在杆B上施加外力偶使杆B扭转,以使两孔对准,并穿过孔装上销钉。在装上销钉后卸除施加在杆B上的外力偶。试问管A和杆B横截面上的扭矩为多大?已知管A和杆B的极惯性矩分别为 ;两杆的材料相同,其切变模量为G。解:解除端约束 ,则端相
19、对于截面C转了 角,(因为事先将杆B的C端扭了一个 角),故变形协调条件为 =0故: 故: 故连接处截面C,相对于固定端的扭转角 为: = 而连接处截面C,相对于固定端I的扭转角 为: = 应变能 = = 返回6-10(6-15) 试求图示各超静定梁的支反力。解(a):原梁AB是超静定的,当去掉多余的约束铰支座B时,得到可静定求解的基本系统(图i)去掉多余约束而代之以反力 ,并根据原来约束条件,令B点的挠度 ,则得到原超静定梁的相当系统(图ii)。利用 的位移条件,得补充方程: 由此得: 由静力平衡,求得支反力 , 为: 剪力图、弯矩图分别如图(iii),(iv)所示。梁的挠曲线形状如图(v)
20、所示。这里遵循这样几个原则:(1)固定端截面挠度,转角均为零;(2)铰支座处截面挠度为零;(3)正弯矩时,挠曲线下凹,负弯矩时,挠曲线上凸;(4)弯矩为零的截面,是挠曲线的拐点位置。(b)解:由相当系统(图ii)中的位移条件 ,得补充方程式: 因此得支反力: 根据静力平衡,求得支反力 : , 剪力图、弯矩图,挠曲线图分别如图(iii)、(iv)、(v)所示。(c)解:由于结构、荷载对称,因此得支反力 ; 应用相当系统的位移条件 ,得补充方程式: 注意到 ,于是得: = 剪力图、弯矩图、挠曲线分别如图(iii)、(iv)、(v)所示。 其中: 若 截面的弯矩为零,则有: 整理: 解得: 或 。返
21、回6-11(6-16) 荷载F作用在梁AB及CD的连接处,试求每根梁在连接处所受的力。已知其跨长比和刚度比分别为 解:令梁在连接处受力为 ,则梁AB、CD受力如图(b)所示。梁AB 截面B的挠度为:梁CD 截面C的挠度为: 由于在铅垂方向截面B与C连成一体,因此有 。将有关式子代入得:变换成: 即: 解得每个梁在连接处受力: 返回6-12(6-18) 图示结构中梁AB和梁CD的尺寸及材料均相同,已知EI为常量。试绘出梁CD的剪力图和弯矩图。解:由EF为刚性杆得 即 图(b):由对称性,剪力图如图(c)所示,弯矩图如图(d)所示, 返回6-13(6-21) 梁AB的两端均为固定端,当其左端转动了
22、一个微小角度 时,试确定梁的约束反力 。解:当去掉梁的A端约束时,得一悬臂梁的基本系统(图a)。对去掉的约束代之以反力 和 ,并限定A截面的位移: 。这样得到原结构的相当系统(图b)。利用位移条件, ,与附录()得补充式方程如下: (1) (2)由式(1)、(2)联解,得: 从静力平衡,进而求得反力 是: 返回第七章 应力状态和强度理论7-1 7-2 7-3 7-4 7-5 7-6 7-7 7-8 7-9 7-10 7-11 7-127-137-1(7-3) 一拉杆由两段杆沿m-n面胶合而成。由于实用的原因,图中的 角限于 范围内。作为“假定计算”,对胶合缝作强度计算时可以把其上的正应力和切应
23、力分别与相应的许用应力比较。现设胶合缝的许用切应力 为许用拉应力 的3/4,且这一拉杆的强度由胶合缝的强度控制。为了使杆能承受最大的荷载F,试问 角的值应取多大?解:按正应力强度条件求得的荷载以 表示:按切应力强度条件求得的荷载以 表示,则 即: 当 时 , , ,时, , ,时, , 时, , 由 、 随 而变化的曲线图中得出,当 时,杆件承受的荷载最大, 。若按胶合缝的 达到 的同时, 亦达到 的条件计算 则 即: , 则 故此时杆件承受的荷载,并不是杆能承受的最大荷载 。返回 7-2(7-7) 试用应力圆的几何关系求图示悬臂梁距离自由端为0.72m的截面上,在顶面以下40mm的一点处的最
24、大及最小主应力,并求最大主应力与x轴之间的夹角。解: = 由应力圆得 返回 7-3(7-8) 各单元体面上的应力如图所示。试利用应力圆的几何关系求: (1)指定截面上的应力;(2)主应力的数值;(3)在单元体上绘出主平面的位置及主应力的方向。解:(a) , (b) , (c) , , , (d), 返回 7-4(7-9) 各单元体如图所示。试利用应力圆的几何关系求:(1)主应力的数值;(2)在单元体上绘出主平面的位置及主应力的方向。解:(a) , (b), (c) , (d), 返回 7-5(7-10) 已知平面应力状态下某点处的两个截面上的应力如图所示。试利用应力圆求该点处的主应力值和主平面
25、方位,并求出两截面间的夹角 值。解:由已知按比例作图中A,B两点,作AB的垂直平分线交 轴于点C,以C为圆心,CA或CB为半径作圆,得(或由 得 半径 )(1)主应力 (2)主方向角 (3)两截面间夹角: 返回 7-6(7-13) 在一块钢板上先画上直径 的圆,然后在板上加上应力,如图所示。试问所画的圆将变成何种图形?并计算其尺寸。已知钢板的弹性常数E=206GPa, =0.28。解: 所画的圆变成椭圆,其中 (长轴) (短轴)返回 7-7(7-15) 单元体各面上的应力如图所示。试用应力圆的几何关系求主应力及最大切应力。解:(a)由xy平面内应力值作a,b点,连接ab交 轴得圆心C(50,0
26、) 应力圆半径故 (b)由xz平面内应力作a,b点,连接ab交 轴于C点,OC=30,故应力圆半径则: (c)由图7-15(c)yz平面内应力值作a,b点,圆心为O,半径为50,作应力圆得 返回 7-8(7-18) 边长为20mm的钢立方体置于钢模中,在顶面上受力F=14kN作用。已知 =0.3,假设钢模的变形以及立方体与钢模之间的摩擦力可略去不计。试求立方体各个面上的正应力。解: (压) (1) (2)联解式(1),(2)得(压)返回 7-9(7-20) D=120mm,d=80mm的空心圆轴,两端承受一对扭转力偶矩 ,如图所示。在轴的中部表面A点处,测得与其母线成 方向的线应变为 。已知材
27、料的弹性常数 , ,试求扭转力偶矩 。解: 方向如图返回 7-10(7-22) 一直径为25mm的实心钢球承受静水压力,压强为14MPa。设钢球的E=210GPa, =0.3。试问其体积减小多少?解:体积应变 = 返回 7-11(7-23) 已知图示单元体材料的弹性常数 。试求该单元体的形状改变能密度。解:主应力: 形状改变能密度: = = 返回 7-12(7-25) 一简支钢板梁承受荷载如图a所示,其截面尺寸见图b。已知钢材的许用应力为 。试校核梁内的最大正应力和最大切应力,并按第四强度理论校核危险截面上的点a的强度。注:通常在计算点a处的应力时近似地按点 的位置计算。解: = (1)梁内最
28、大正应力发生在跨中截面的上、下边缘 超过 的5.3%尚可。(2)梁内最大剪应力发生在支承截面的中性轴处(3)在集中力作用处偏外横截面上校核点a的强度 超过 的3.53%,在工程上是允许的。返回 7-13(7-27) 受内压力作用的容器,其圆筒部分任意一点A(图a)处的应力状态如图b所示。当容器承受最大的内压力时,用应变计测得 。已知钢材的弹性模量E=210GPa,泊松比 =0.3,许用应力 。试按第三强度理论校核A点的强度。解: , , 根据第三强度理论: 超过 的7.64%,不能满足强度要求。返回 第八章 组合变形及连接部分的计算8-1 8-2 8-3 8-4 8-5 8-6 8-7 8-8
29、 8-9 8-10 下页8-1 14号工字钢悬臂梁受力情况如图所示。已知 m, , ,试求危险截面上的最大正应力。解:危险截面在固定端= = 返回8-2 受集度为 的均布荷载作用的矩形截面简支梁,其荷载作用面与梁的纵向对称面间的夹角为 ,如图所示。已知该梁材料的弹性模量 ;梁的尺寸为 m, mm, mm;许用应力 ;许可挠度 。试校核梁的强度和刚度。解: = ,强度安全, = = 刚度安全。返回8-3(8-5) 图示一悬臂滑车架,杆AB为18号工字钢,其长度为 m。试求当荷载 作用在AB的中点D处时,杆内的最大正应力。设工字钢的自重可略去不计。解:18号工字钢 , ,AB杆系弯压组合变形。,
30、, = = = = 返回8-4(8-6) 砖砌烟囱高 m,底截面m-m的外径 m,内径 m,自重 kN,受 的风力作用。试求:(1)烟囱底截面上的最大压应力;(2)若烟囱的基础埋深 m,基础及填土自重按 计算,土壤的许用压应力 ,圆形基础的直径D应为多大?注:计算风力时,可略去烟囱直径的变化,把它看作是等截面的。解:烟囱底截面上的最大压应力:= = 土壤上的最大压应力 :即 即 解得: m 返回8-5(8-8) 试求图示杆内的最大正应力。力F与杆的轴线平行。解: ,z为形心主轴。固定端为危险截面,其中:轴力 ,弯矩 , = A点拉应力最大= = B点压应力最大= = 因此 返回8-6(8-9)
31、 有一座高为1.2m、厚为0.3m的混凝土墙,浇筑于牢固的基础上,用作挡水用的小坝。试求: (1)当水位达到墙顶时墙底处的最大拉应力和最大压应力(设混凝土的密度为 );(2)如果要求混凝土中没有拉应力,试问最大许可水深h为多大?解:以单位宽度的水坝计算: 水压: 混凝土对墙底的压力为:墙坝的弯曲截面系数: 墙坝的截面面积: 墙底处的最大拉应力 为:= = 当要求混凝土中没有拉应力时: 即 即 m返回8-7(8-10) 受拉构件形状如图,已知截面尺寸为40mm5mm,承受轴向拉力 。现拉杆开有切口,如不计应力集中影响,当材料的 时,试确定切口的最大许可深度,并绘出切口截面的应力变化图。解: 即
32、整理得: 解得: mm返回8-8(8-11) 一圆截面直杆受偏心拉力作用,偏心距 mm,杆的直径为70mm,许用拉应力 为120MPa。试求杆的许可偏心拉力值。解:圆截面面积 圆截面的弯曲截面系数 即: , 返回8-9(8-15) 曲拐受力如图示,其圆杆部分的直径 mm。试画出表示A点处应力状态的单元体,并求其主应力及最大切应力。解:A点所在的横截面上承受弯矩和扭矩作用,其值它们在点A分别产生拉应力和切应力,其应力状态如图8-15a,其中 注:剪力在点A的切应力为零。返回8-10(8-16) 铁道路标圆信号板,装在外径 mm的空心圆柱上,所受的最大风载 , 。试按第三强度理论选定空心柱的厚度。
33、解:忽略风载对空心柱的分布压力,只计风载对信号板的压力,则信号板受风力空心柱固定端处为危险截面,其弯矩: 扭矩: = mm返回 第九章 压杆稳定9-1 9-2 9-3 9-4 9-5 9-6 9-7 9-8 9-9 9-10 9-119-1(9-2) 图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图f所示杆在中间支承处不能转动)?解:对于材料和截面相同的压杆,它们能承受的压力与 成反比,此处, 为与约束情况有关的长度系数。(a) =15=5m(b) =0.77=4.9m(c) =0.59=4.5m(d) =22=4m(e) =18=8m(f) =0.75=3.5m故图e所示杆
34、 最小,图f所示杆 最大。返回9-2(9-5) 长5m的10号工字钢,在温度为 时安装在两个固定支座之间,这时杆不受力。已知钢的线膨胀系数 。试问当温度升高至多少度时,杆将丧失稳定?解: 返回9-3(9-6) 两根直径为d的立柱,上、下端分别与强劲的顶、底块刚性连接,如图所示。试根据杆端的约束条件,分析在总压力F作用下,立柱可能产生的几种失稳形态下的挠曲线形状,分别写出对应的总压力F之临界值的算式(按细长杆考虑),确定最小临界力 的算式。解:在总压力F作用下,立柱微弯时可能有下列三种情况:(a)每根立柱作为两端固定的压杆分别失稳: (b)两根立柱一起作为下端固定而上端自由的体系在自身平面内失稳
35、 失稳时整体在面内弯曲,则1,2两杆组成一组合截面。 (c)两根立柱一起作为下端固定而上端 自由的体系在面外失稳故面外失稳时 最小= 。返回9-4(9-7) 图示结构ABCD由三根直径均为d的圆截面钢杆组成,在点B铰支,而在点A和点C固定,D为铰接点, 。若结构由于杆件在平面ABCD内弹性失稳而丧失承载能力,试确定作用于结点D处的荷载F的临界值。解:杆DB为两端铰支 ,杆DA及DC为一端铰支一端固定,选取 。此结构为超静定结构,当杆DB失稳时结构仍能继续承载,直到杆AD及DC也失稳时整个结构才丧失承载能力,故 返回9-5(9-9) 下端固定、上端铰支、长 m的压杆,由两根10号槽钢焊接而成,如图所示,并符合钢结构设计规范中实腹式b类截面中心受压杆的要求。已知杆的材料为Q235钢,强度许用应力 ,试求压杆的许可荷载。解: m返回9-6(9-10) 如果杆分别由下列材料制成: (1)比例极限 ,弹性模量 的钢;(2) , ,含镍3.5%的镍钢;(3) , 的松木。试求可用欧拉公式计算临界力的压杆的最小柔度。解:(1) (2) (3) 返回9-7(9