《等差数列学习要点精选PPT.ppt》由会员分享,可在线阅读,更多相关《等差数列学习要点精选PPT.ppt(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、等差数列学习要点第1页,此课件共14页哦 练习练习:求和求和1.1+2+3+n 答案答案:Sn=n(n+1)/22.2+4+8+2n 答案答案:Sn=2n+1-2方法:方法:直接求和法直接求和法第2页,此课件共14页哦例1 求数列 x,2x2,3x3,nxn,的前n项和。解:解:当当x=0时时 Sn=0当当x=1时时 Sn=1+2+3+n=n(n+1)/2当当x1时时 Sn=x+2x2+3x3+nxn xSn=x2+2x3+3x4+(n-1)xn+nxn+1 得:得:(1-x)Sn=x+x2+x3+xn-nxn+1 化简得:化简得:Sn=x(1-xn)/(1-x)2-nxn+1/(1-x)第3
2、页,此课件共14页哦 0 (x=0)综合综合得得 Sn=n(n+1)/2 (x=1)x(1-xn)/(1-x)2-nxn+1/(1-x)(x1)第4页,此课件共14页哦小结小结 1:“错项相减法错项相减法”求和求和,常应用于型如常应用于型如anbn的数列求和的数列求和,其中其中an为等为等差差数数列列,bn 为等为等比比数列数列.第5页,此课件共14页哦练习练习 1求和求和:1/2+2/4+3/8+n/2n 方法方法:可以将等式两边同时乘以可以将等式两边同时乘以2或或1/2,然后利用然后利用“错位相减法错位相减法”求和求和.第6页,此课件共14页哦例例2:求和求和解:解:数列的通项公式为数列的
3、通项公式为第7页,此课件共14页哦小结小结2:本题利用的是本题利用的是“裂项相消法裂项相消法”,此此法常用于形如法常用于形如1/f(n)g(n)的数列求和,的数列求和,其中其中f(n),g(n)是关于是关于n(nN)的一次的一次函数。函数。把数列中的每一项都拆成两项的把数列中的每一项都拆成两项的差,从而产生一些可以相消的项,差,从而产生一些可以相消的项,最后剩下有限的几项。最后剩下有限的几项。方法:方法:对裂项公式的分析,通俗地对裂项公式的分析,通俗地说,裂项,裂什麽?说,裂项,裂什麽?裂通项。裂通项。此方法应注意:此方法应注意:第8页,此课件共14页哦练习练习 2:求和求和接下来可用接下来可
4、用“裂项相消法裂项相消法”来求和。来求和。分析分析:第9页,此课件共14页哦例例 3:求和:求和解:解:第10页,此课件共14页哦小结小结 3:本题利用的是本题利用的是“分解转化求和法分解转化求和法”方法:方法:把数列的通项分解成几项,从而出把数列的通项分解成几项,从而出现现几个等差数列或等比数列,几个等差数列或等比数列,再再根据公式进行求和。根据公式进行求和。第11页,此课件共14页哦练习练习 3求和:求和:1+(1+2)+(1+2+22)+(1+2+22 +2n-1)分析:利用分析:利用“分解转化求和分解转化求和”第12页,此课件共14页哦总结:总结:直接求和直接求和(公式法)(公式法)等
5、差、或等比数列用求和公等差、或等比数列用求和公式,常数列直接运算。式,常数列直接运算。倒序求和倒序求和等差数列的求和方法等差数列的求和方法错项相减错项相减数列数列 anbn的求和,其中的求和,其中an是是等差数列,等差数列,bn是等比数列。是等比数列。裂项相消裂项相消分解转化法分解转化法把通项分解成几项,从而出现几个把通项分解成几项,从而出现几个等差数列或等比数列进行求和。等差数列或等比数列进行求和。常见求和方法常见求和方法适用范围及方法适用范围及方法数列数列1/f(n)g(n)的求和,其中的求和,其中 f(n),g(n)是关于是关于n的一次函数。的一次函数。第13页,此课件共14页哦第14页,此课件共14页哦