第五部分检验和检验精选文档.ppt

上传人:石*** 文档编号:51605868 上传时间:2022-10-19 格式:PPT 页数:47 大小:2.83MB
返回 下载 相关 举报
第五部分检验和检验精选文档.ppt_第1页
第1页 / 共47页
第五部分检验和检验精选文档.ppt_第2页
第2页 / 共47页
点击查看更多>>
资源描述

《第五部分检验和检验精选文档.ppt》由会员分享,可在线阅读,更多相关《第五部分检验和检验精选文档.ppt(47页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第五部分检验和检验本讲稿第一页,共四十七页思考:下列问题的比较对象有何差异?思考:下列问题的比较对象有何差异?某班学生语文水平是否高于数学水平?男生语文成绩是否高于女生语文成绩?某种训练方法是否可以提高幼儿的智力水平?本讲稿第二页,共四十七页假设检验平均数的显著性检验(样本与总体)平均数差异的显著性检验(总体与总体)方差的差异检验Compare Means 和 General Linear Model 本讲稿第三页,共四十七页T 检验检验 平均数的显著性检验平均数的显著性检验(样本-总体)一、样本平均数与总体平均数差异显著性检验例:例:3-43-4岁幼儿的平均智商为岁幼儿的平均智商为10010

2、0。在采用最新的语言训练方法后,随。在采用最新的语言训练方法后,随机抽取机抽取2020个幼儿,测得智商为个幼儿,测得智商为105 102 105 104 106 97 102 109 99 104 106 105 102 105 104 106 97 102 109 99 104 106 108 103 101 98 103 105 102 102 100108 103 101 98 103 105 102 102 100问问:试检验该训练方式是否有助于提高幼儿的智商试检验该训练方式是否有助于提高幼儿的智商?AnalyzeCompare Meansone-samples T Test本讲稿第四

3、页,共四十七页Analyze/Compare Means/one-samples T Test本讲稿第五页,共四十七页Test ValueTest Value空格中输入要比较的值,空格中输入要比较的值,通常是总体的平均数通常是总体的平均数 本讲稿第六页,共四十七页本讲稿第七页,共四十七页标准差标准差标准差是用来反映变异程度,当两组观察值在单位相同、均数相近的情况下,标准差越大,说明观察值间的变异程度越大。在标准正态分布曲线下,人们经常用均数加减标准差来计算样本观察值数量的理论分布,即:x 1.96 s表示95%的观察值在此范围内;x 2.58s表示99%的观察值在此范围内。x 1.96 s 是

4、确定正常值的方法,经常在工作中被采用,也称为95%正常值范围。本讲稿第八页,共四十七页标准误标准误即样本均数的标准差,是样本均数的抽样误差。在实际工作中,我们无法直接了解研究对象的总体情况,经常采用随机抽样的方法,取得所需要的指标,即样本指标。样本指标与总体指标之间存在的差别,称为抽样误差,其大小通常用均数的标准误来表示。标准误差不是测量值的实际误差,也不是误差范围,它只是对一组测量数据可靠性的估计。标准误差小,测量的可靠性大一些,反之,测量就不大可靠。本讲稿第九页,共四十七页抽样研究的目的之一,是用样本指标来估计总体指标。例如:用样本均数来估计总体均数。由于两者间存在抽样误差,且不同的样本可

5、能得到不同的估计值,因此,常用“区间估计”的方法,来估计总体均数的范围。即:X 1.96Sx表示总体均数的95%可信区间;X2158Sx表示总体均数的99%可信区间。95%可信区间指的是:在X1.96Sx范围中,包括总体均数的可能性为95%,也就是说,在100次抽样估计中,可能有95次正确(包括总体均数),有5次错误(不包括总体均数)。99%可信区间也是这个道理,只是包括的范围更大。本讲稿第十页,共四十七页在实际工作中,由于抽取的样本较小,不呈标准正态分布,而遵从t分布,所以常用t值代替1.96或2.58。可在t值表上查出不同自由度下不同界值时的t值。可见到自由度越小,t值越大,当自由度逐渐增

6、大时,t值也逐渐接近1.96或2.58,当自由度=时,t值就完全被其代替了。所以,我们常用Xt 0.05Sx表示总体均数的95%可信区间,用xt0.01Sx表示总体均数的99%可信区间。综上所述,标准差与标准误尽管都是反映变异程度的指标,但这是两个不同的统计学概念。标准差描述的是样本中各观察值间的变异程度,而标准误表示每个样本均数间的变异程度,描述样本均数的抽样误差,即样本均数与总体均数的接近程度,也可以称为样本均数的标准差。二者不可混淆。本讲稿第十一页,共四十七页练习题7 7岁儿童的平均身高为岁儿童的平均身高为102102,现测得某班,现测得某班1212名名7 7岁儿童身高分岁儿童身高分别为

7、:别为:9797、9999、103103、100100、104104、9797、105105、110110、9999、9898、103103、9999请问该班儿童身高与平均水平是否存在差异?请问该班儿童身高与平均水平是否存在差异?本讲稿第十二页,共四十七页Analyze/Compare Means/one-samples T Test本讲稿第十三页,共四十七页本讲稿第十四页,共四十七页二、非配对设计两样本均数差异显著性检验二、非配对设计两样本均数差异显著性检验T 检检验验(样本-总体)例:配制两种不同饵料例:配制两种不同饵料A A、B B养殖罗非鱼,选取养殖罗非鱼,选取1414个鱼池,随机均个

8、鱼池,随机均分两组进行实验。经一定试验期后的鱼量列入下表(有一鱼池遭分两组进行实验。经一定试验期后的鱼量列入下表(有一鱼池遭到意外而缺失数据)。试问这两种不同饵料养殖罗非鱼的产鱼量到意外而缺失数据)。试问这两种不同饵料养殖罗非鱼的产鱼量有无差异?有无差异?A A料料578578562562619619544544536536564564532532B B料料642642587587631631625625598598592592Analyze/Compare Means/Indendent-samples T Test 本讲稿第十五页,共四十七页提示:提示:增加一列增加一列变量表示变量表示类别

9、。类别。本讲稿第十六页,共四十七页本讲稿第十七页,共四十七页本讲稿第十八页,共四十七页本讲稿第十九页,共四十七页本讲稿第二十页,共四十七页练习题有有A A、B B两种饮料,分别各安排两种饮料,分别各安排1010人对其中一种饮料评价人对其中一种饮料评价(共(共2020人,每人只喝其中一种饮料),结果如下:人,每人只喝其中一种饮料),结果如下:两种饮料口味是否有差异?两种饮料口味是否有差异?A1322345123B4554421433本讲稿第二十一页,共四十七页建立数据库Analyze/Compare Means/Indendent-samples T Test 本讲稿第二十二页,共四十七页输入变

10、量本讲稿第二十三页,共四十七页本讲稿第二十四页,共四十七页三、配对设计两样本均数差异显著性检验三、配对设计两样本均数差异显著性检验自身配对自身配对 指同一试验单位在两个不同指同一试验单位在两个不同时间上分别接受前后两次处时间上分别接受前后两次处理,用其前后两次的观测值理,用其前后两次的观测值进行自身对照比较;或同一进行自身对照比较;或同一试验单位的不同部位的观测试验单位的不同部位的观测值或不同方法的观测值进行值或不同方法的观测值进行自身对照比较。自身对照比较。同源配对同源配对 指将来源相同、性质相同的两个供指将来源相同、性质相同的两个供试单位配成一对,并设有多个配对,试单位配成一对,并设有多个

11、配对,然后对每个配对的两个供试单位随然后对每个配对的两个供试单位随机地实施不同处理,则所得观察值机地实施不同处理,则所得观察值为成对,然后对每一配对的两个个为成对,然后对每一配对的两个个体随机地实施不同处理,或在条件体随机地实施不同处理,或在条件最为近似的两个小区或盆钵中对植最为近似的两个小区或盆钵中对植株进行两种不同处理。株进行两种不同处理。本讲稿第二十五页,共四十七页例:例:1010只家兔接种某种疫苗前后体温变化如下表,试检验只家兔接种某种疫苗前后体温变化如下表,试检验接种前后体温是否有显著的变化?接种前后体温是否有显著的变化?兔号12345678910前38.0 38.2 38.2 38

12、.4 38.4 38.1 38.1 38.2 38.5 38.3后38.4 38.5 38.5 38.8 38.9 38.5 38.7 38.5 38.5 39.0AnalyzeCompare MeansPaired-samples T Test 本讲稿第二十六页,共四十七页Analyze/Compare Means/Paired-samples T Test 提示:两列变量提示:两列变量本讲稿第二十七页,共四十七页本讲稿第二十八页,共四十七页本讲稿第二十九页,共四十七页本讲稿第三十页,共四十七页练习题某学校推广了一种新的教学方法,实施前和实施后用一套平某学校推广了一种新的教学方法,实施前和实

13、施后用一套平行试卷分别测试了学生的学业成绩,结果如下,试问,这种行试卷分别测试了学生的学业成绩,结果如下,试问,这种教学方法是否有效?教学方法是否有效?前前686871715858929274748484525278787979969659598383后后696970705656959577778181525275757676989861617676本讲稿第三十一页,共四十七页Analyze/Compare Means/Paired-samples T Test 本讲稿第三十二页,共四十七页本讲稿第三十三页,共四十七页本讲稿第三十四页,共四十七页本讲稿第三十五页,共四十七页F F 检验检验单因

14、素方差分析单因素方差分析One-way analysis of varianceOne-way analysis of variance本讲稿第三十六页,共四十七页方差分析的基本思想方差分析的基本思想 将所有测量值间的总变异按照其变异的来源分解为多个部份,然后进行比较,评价由某种因素所引起的变异是否具有统计学意义。离均差平方和的分解离均差平方和的分解组间变异组间变异组内变异组内变异本讲稿第三十七页,共四十七页三种不同的变异三种不同的变异总变异(总变异(Total variationTotal variation):全部测量值与总均):全部测量值与总均数间的差异。数间的差异。组间变异(组间变异(

15、between group variation between group variation):各组):各组的均数与总均数间的差异。的均数与总均数间的差异。组内变异(组内变异(within group variation)within group variation):每组的每个测:每组的每个测量值与该组均数的差异。量值与该组均数的差异。本讲稿第三十八页,共四十七页三种三种“变异变异”之间的关系之间的关系离均差平方和离均差平方和分解分解:本讲稿第三十九页,共四十七页均方差,均方均方差,均方(mean square,MS)本讲稿第四十页,共四十七页F F 值值本讲稿第四十一页,共四十七页方差分

16、析实例方差分析实例方差分析实例方差分析实例本讲稿第四十二页,共四十七页H0:即即4个试验组总体均数相等个试验组总体均数相等 H1:4个试验组总体均数个试验组总体均数不全相等不全相等 检验水准检验水准 一、一、建立检验假设建立检验假设本讲稿第四十三页,共四十七页四种解毒药的解毒效果是否相同?SiS1S2S3S4合计值5.99 4.15 3.78 4.71 6.65 本讲稿第四十四页,共四十七页二、二、计算离均差平方、自由度、均方计算离均差平方、自由度、均方本讲稿第四十五页,共四十七页三、计算三、计算F值值本讲稿第四十六页,共四十七页四、下结论四、下结论 注意:当组数为注意:当组数为2 2时,完全随机设计的方差分时,完全随机设计的方差分析结果与两样本均数比较的析结果与两样本均数比较的t t检验结果等价,对同一资料检验结果等价,对同一资料,有:有:本讲稿第四十七页,共四十七页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁