初二数学下册学问点总结最新.docx

上传人:0****3 文档编号:51496794 上传时间:2022-10-18 格式:DOCX 页数:11 大小:17.10KB
返回 下载 相关 举报
初二数学下册学问点总结最新.docx_第1页
第1页 / 共11页
初二数学下册学问点总结最新.docx_第2页
第2页 / 共11页
点击查看更多>>
资源描述

《初二数学下册学问点总结最新.docx》由会员分享,可在线阅读,更多相关《初二数学下册学问点总结最新.docx(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、初二数学下册学问点总结最新 初二数学下册学问点总结最新有哪些你知道吗?正由于许多人学了不能够特别好的理解、运用于日常生活中,才使得特别多人对数学不重视。一起来看看初二数学下册学问点总结最新,欢迎查阅! 初二数学下册学问点总结 第一章 一元一次不等式和一元一次不等式组 一、一般地,用符号“”(或“”),“”(或“”)连接的式子叫做不等式。 能使不等式成立的未知数的值,叫做不等式的解. 不等式的解不唯一,把全部满意不等式的解集合在一起,构成不等式的解集. 求不等式解集的过程叫解不等式. 由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组 不等式组的解集 :一元一次不等式组各个不等式的解集的

2、公共部分。 等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式. 基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式. 二、不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变. (注:移项要变号,但不等号不变。)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向转变.不等式的基本性质1、 若ab, 则a+cb+c;2、若ab, c0 则acbc若c0, 则ac 不等式的其他性质:反射性:若ab,则bb,且bc,则ac 三、解不等式的步骤:

3、1、去分母; 2、去括号; 3、移项合并同类项; 4、系数化为1。 四、解不等式组的步骤:1、解出不等式的解集2、在同一数轴表示不等式的解集。 五、列一元一次不等式组解实际问题的一般步骤:(1) 审题;(2)设未知数,找(不等量)关系式;(3)设元,(依据不等量)关系式列不等式(组)(4)解不等式组;检验并作答。 六、常考题型: 1、 求4x-67x-12的非负数解. 2、已知3(x-a)=x-a+1r的解适合2(x-5) 8a,求a 的范围. 3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间。 其次章 分解因式 一、公式:1、 ma+mb+mc=m(a+b+c) 2、a2

4、-b2=(a+b)(a-b) 3、a22ab+b2=(ab)2 二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。 1、把几个整式的积化成一个多项式的形式,是乘法运算.2、把一个多项式化成几个整式的积的形式,是因式分解.3、ma+mb+mc m(a+b+c)4、因式分解与整式乘法是相反方向的变形。 三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式. 找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较

5、低的.(4)全部这些因式的乘积即为公因式. 四、分解因式的一般步骤为:(1)若有“-”先提取“-”,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则依据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止. 五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式. 分解因式的方法:1、提公因式法。2、运用公式法。 第三章 分式 注:1对于任意一个分式,分母都不能为零. 2分式与整式不同的是:分式的分母中含有字母,整式的分母中不含字母. 3分式的值为零含两层意思:分母不等于零;分子等于零。( 中B0时,分式有意义;分式A/B中,当

6、B=0分式无意义;当A=0且B0时,分式的值为零。) 常考学问点:1、分式的意义,分式的化简。2、分式的加减乘除运算。3、分式方程的解法及其利用分式方程解应用题。 第四章 相像图形 一、 定义 表示两个比相等的式子叫比例.假如a与b的比值和c与d的比值相等,那么 或ab=cd,这时组成比例的四个数a,b,c,d叫做比例的项,两端的两项叫做外项,中间的两项叫做内项.即a、d为外项,c、b为内项. 假如选用同一个长度单位量得两条线段AB、CD的长度分别是m、n,那么就说这两条线段的比(ratio)ABCD=mn,或写成 = ,其中,线段AB、CD分别叫做这两个线段比的前项和后项.假如把 表示成比值

7、k,则 =k或AB=kCD. 四条线段a,b,c,d中,假如a与b的比等于c与d的比,即 ,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段. 黄金分割的定义:在线段AB上,点C把线段AB分成两条线段AC和BC,假如 ,那么称线段AB被点C黄金分割(plinple):其中从总体中抽取的一部分个体叫做总体的一个样本。(6) 当总体中的个体数目较多时,为了节约时间、人力、物力,可采纳抽样调查.为了获得较为精确的调查结果,抽样时要留意样本的代表性和广泛性.还要留意关注样本的大小. (7)我们称每个对象出现的次数为频数。而每个对象出现的次数与总次数的比值为频率。 数据波动的统计量:极差:指一组

8、数据中最大数据与最小数据的差。方差:是各个数据与平均数之差的平方的平均数。标准差:方差的算术平方根。识记其计算公式。一组数据的极差,方差或标准差越小,这组数据就越稳定。还要知平均数,众数,中位数的定义。 刻画平均水平用:平均数,众数,中位数。 刻画离散程度用:极差,方差,标准差。 常考学问点:1、作频数分布表,作频数分布直方图。2、利用方差比较数据的稳定性。3、平均数,中位数,众数,极差,方差,标准差的求法。3、频率,样本的定义 第六章 证明 一、对事情作出推断的句子,就叫做命题. 即:命题是推断一件事情的句子。一般状况下:疑问句不是命题.图形的作法不是命题. 每个命题都有条件(conditi

9、on)和结论(conclusion)两部分组成. 条件是已知的事项,结论是由已知事项推断出的事项. 一般地,命题都可以写成“假如,那么”的形式.其中“假如”引出的部分是条件,“那么”引出的部分是结论. 要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论.这种例子称为反例。 二、三角形内角和定理:三角形三个内角的和等于180度。1、证明三角形内角和定理的思路是将原三角形中的三个角“凑”到一起组成一个平角.一般需要作帮助线.既可以作平行线,也可以作一个角等于三角形中的一个角.2、三角形的外角与它相邻的内角是互为补角. 三、三角形的外角与它不相邻的内角关系是:(

10、1)三角形的一个外角等于和它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角. 四、证明一个命题是真命题的基本步骤是:(1)依据题意,画出图形.(2)依据条件、结论,结合图形,写出已知、求证.(3)经过分析,找出由已知推出求证的途径,写出证明过程. 在证明时需留意:(1)在一般状况下,分析的过程不要求写出来.(2)证明中的每一步推理都要有依据. 假如两条直线都和第三条直线平行,那么这两条直线也相互平行。30。所对的直角边是斜边的一半。斜边上的高是斜边的一半。 常考学问点:1、三角形的内角和定理,及三角形外角定理。2两直线平行的性质及判定。命题及其条件和结论,真假命题的定

11、义。 初二必备数学学问 位置与坐标 1、确定位置 在平面内,确定物体的位置一般需要两个数据。 2、平面直角坐标系及有关概念 平面直角坐标系 在平面内,两条相互垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。 坐标轴和象限 为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、其次象限、第三象限、第四象限。 留意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。 点的坐标

12、的概念 对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。 点的坐标用(a,b)表示,其挨次是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,(a,b)和(b,a)是两个不同点的坐标。 平面内点的与有序实数对是一一对应的。 不同位置的点的坐标的特征 a、各象限内点的坐标的特征 点P(x,y)在第一象限 x0,y0 点P(x,y)在其次象限 x0,y0 点P(x,y)在第三象限 x0,y0 点P(x,y)在第四象限 x0,y0 b、坐标轴上的点的特征

13、点P(x,y)在x轴上 y=0,x为任意实数 点P(x,y)在y轴上 x=0,y为任意实数 点P(x,y)既在x轴上,又在y轴上 x,y同时为零,即点P坐标为(0,0)即原点 c、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线(直线y=x)上 x与y相等 点P(x,y)在其次、四象限夹角平分线上 x与y互为相反数 d、和坐标轴平行的.直线上点的坐标的特征 位于平行于x轴的直线上的各点的纵坐标相同。 位于平行于y轴的直线上的各点的横坐标相同。 e、关于x轴、y轴或原点对称的点的坐标的特征 点P与点p关于x轴对称 横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴

14、的对称点为P(x,-y) 点P与点p关于y轴对称 纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P(-x,y) 点P与点p关于原点对称,横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P(-x,-y) f、点到坐标轴及原点的距离 点P(x,y)到坐标轴及原点的距离: 点P(x,y)到x轴的距离等于 ?y? 点P(x,y)到y轴的距离等于 ?x? 点P(x,y)到原点的距离等于 x2+y2 初二下册数学总结 第一章分式 1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变 2分式的运算 (1)分式的乘除乘法法则:分式乘以分式,用分子的积

15、作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 (2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减 3整数指数幂的加减乘除法 4分式方程及其解法 其次章反比例函数 1反比例函数的表达式、图像、性质 图像:双曲线 表达式:y=k/x(k不为0) 性质:两支的增减性相同; 2反比例函数在实际问题中的应用 第三章勾股定理 1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方 2勾股定理的逆定理:假如一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角

16、形 第四章四边形 1平行四边形 性质:对边相等;对角相等;对角线相互平分。 判定:两组对边分别相等的四边形是平行四边形; 两组对角分别相等的四边形是平行四边形; 对角线相互平分的四边形是平行四边形; 一组对边平行而且相等的四边形是平行四边形。 推论:三角形的中位线平行第三边,并且等于第三边的一半。 2特别的平行四边形:矩形、菱形、正方形 (1)矩形 性质:矩形的四个角都是直角; 矩形的对角线相等; 矩形具有平行四边形的全部性质 判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形; 推论:直角三角形斜边的中线等于斜边的一半。 (2)菱形性质:菱形的四条边都相等;菱形的对角线相互垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质 判定:有一组邻边相等的平行四边形是菱形;对角线相互垂直的平行四边形是菱形;四边相等的四边形是菱形。 (3)正方形:既是一种特别的矩形,又是一种特别的菱形,所以它具有矩形和菱形的全部性质。 3梯形:直角梯形和等腰梯形 等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。 第五章数据的分析 加权平均数、中位数、众数、极差、方差 初二数学下册学问点总结最新

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作总结

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁